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1 Introduction 

“Migration is complex and uncertain. To be effective, migration policies need to explicitly 

acknowledge these two defining features of contemporary mobility” (QuantMig proposal, p. 3). In 

this paper, uncertainty is dealt with by approaching migration as an outcome of a stochastic 

process. Complexity is accommodated by viewing the world as a system of regions (countries), in 

which actors operate. The modelling of an interconnected system of regions requires a 

multiregional model that incorporates directional migration flows and shed light on the dynamics 

that results. Population models of systems of interconnected regions have been developed in 

multiregional demography (see Rogers, 1995 for an introduction). They provide a sound 

foundation for the comprehension and prediction of migration flows in an interconnected world 

(Raymer et al., 2018).  

In this paper an actor-based multiregional model is proposed. In the literature, an actor-based 

model is often referred to as an agent-based model. An agent is an entity with the capacity to act 

on one’s own initiative and agency is the manifestation of that capacity. The concept of agency is 

widely discussed across disciplines and a unique definition does not exists (Bandura, 2006; Hitlin 

and Johnson, 2015). In this paper, agency is defined as the capacity to act in relative freedom on 

one’s preferences. An agent-based model (ABM) is a microsimulation model with actors that have 

attributes and agency. Actors usually interact with other actors and their environment. I 

distinguish two types of actors: individuals and governments. Individuals have the capacity to 

migrate between countries and regions of the world. That capacity is limited by lack of resources, 

including social capital, and regulations imposed by governments. Individuals have preferences 

about where they want to live and work (location preferences). They value characteristics of places 

and assign place utilities accordingly. Place utility is a core concept in behavioural models of 

migration (Wolpert, 1965). The utility an individual assigns to a place determines the perceived 

attractiveness of that place. The model brings individuals to life by acknowledging individual 

preferences, agency, restrictions, rejections, adaptation to conditions beyond one’s control, and 

feelings of satisfaction and dissatisfaction. Agent-based models are used extensively in the study of 

migration (for reviews, see Klabunde and Willekens, 2016; MacAlpine et al., 2021;  Thober et al., 

2018; and Hinsch and Bijak, 2022). 

Governments monitor the aggregate flow of migrants and may impose immigration quota and use 

selection of admission criteria to balance the self-selection of migrants. In the paper, the restrictions 

are limited to immigration quota and a single selection criterion: country of origin. The selection 

criterion results in immigration quota by country of origin. Individuals who are not satisfied with 

their current place of residence consider migration. Although the path from desire to action is 

often long and bumpy (Klabunde et al., 2017), for research purposes the path is usually simplified 

into two characteristic stages. Carling (2002) proposed the “aspiration/ability model”, which 

distinguished between the wish to migrate and the realization of this wish. Willekens (2021) 

reviews several simplifications of the path from desire to action. In this paper, a desire to live and 

work in a particular country is represented by the notion of location preference. The ability to act 

on one’s preference is restricted by immigration quota. If the number of individuals who are 

dissatisfied with their current residence and prefer to live in a particular country exceeds the 

immigration quota of that country, not all individuals with a desire to migrate will be able to move 

to their preferred country. Individuals who do not make it may adapt their preferences resulting in 
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a stay (by choice) or a move elsewhere. It may also result in a stay by necessity, in which case the 

dissatisfaction remains. An increase in stayers reduces the level of migration. A move elsewhere is 

known as substitution effect. Dissatisfied individuals may also look for ways to circumvent the 

restrictions, e.g. by using unauthorized channels. These effects receive considerable attention in the 

migration literature (see e.g. Simon, 2019, pp. 27ff; Clemens and Gough, 2018; Barslund et al., 

2019). De Haas et al. (2019) show that they limit the effectiveness of migration policies. Note that 

an individual’s ability to migrate to the preferred destination depends not only on immigration 

quota and admission criteria, but also on the preferences of other individuals in the population. 

The effects of immigration quota and the hidden interactions between individuals they introduce 

are made explicit in the paper.  

In the paper, a distinction is made between the microstate of a system of regions (or microsystem) 

and the macrostate of a system (macrosystem). A microstate documents, for each individual in the 

system, the location and the changes in location. Personal attributes may be added, e.g. individual 

preferences. A description of the microstate requires that each individual is given a unique 

identification number (ID). A macrostate describes the system in terms of population 

characteristics and aggregate migration flows, without reference to individuals. If governments 

show an interest in individual migrants, their interest concerns the microstate. The distinction 

between micro- and macrostate is introduced to accommodate actors and actions at two levels of 

aggregation. Immigration quota impose restrictions on the macrostate of the system of regions; 

they are generally not aimed at microstates. It means that governments limit the number of 

immigrants, but are indifferent about who immigrates. If governments are not indifferent, they 

may use individualized visa as a selection mechanism, in which case they interested in the 

microstate. The distinction between micro- and macrostate is important for another reason; 

namely, to determine which aggregate migration flow is most likely, given the individual 

preferences and the immigration restrictions. Any given macrostate can be produced by different 

microstates. Possible macrostates are not equally probable, however. Some are more probable than 

other. The probability of a macrostate depends on the number of microstates that are consistent 

with a given macrostate. The logarithm of that number is the entropy of the macrostate. The most 

probable macrostate is the macrostate with the highest entropy. If constraints are imposed, such as 

immigration quota and the requirement that the macrostate reflects individual location 

preferences, the most probable macrostate is the one that satisfied these constraints and maximizes 

its entropy. Two slightly different entropy concepts exist. The Boltzmann entropy or configuration 

entropy relies on combinatorics (the mathematics of combinations and permutations). The Gibbs 

or Shannon entropy, used in information theory, is rooted in probability theory. The latter is used 

in this paper1.  

The actor-based multiregional model should satisfy an important requirement: models of 

microstates and models of macrostates must be consistent. That condition is satisfied when the 

actor-based model, with its strong microsimulation component, is able to produce the same flows 

of migrants and the same population distribution as the population-based model. The conditions 

under which the two types of models produce the same results must be determined. In the context 

of population projection, Willekens (2011) identifies and discusses the conditions that need to be 

satisfied to ensure consistency between microsimulation and the cohort-component model. In this 

paper, a probabilistic formalism is used to integrate micro and macro. The probability model is a 

 

1 Wilson (1970), who introduced entropy maximization to estimate migration flows between places of origin and 

destination, used the Boltzmann entropy.  
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micro-level model; it describes individuals. It also describes groups of individuals who are similar, 

who differ in a defined way that can be described by a probability distribution, or who collectively 

meet certain requirements. This fundamental property ensures the integration of micro, e.g. 

individual agency, and macro, e.g. structural constraints. Immigration restrictions do not apply to 

individuals but to groups of individuals. They are restrictions individuals must meet collectively. 

The constraints limit the possible outcomes of the individual-based probability models, and hence 

the number of microstates. Imposing constraints reduces the number of possible microstates. The 

effects of the constraints are measured by the change in entropy of the macrostate. In the absence 

of immigration quota (constraints), the migration flow reflects the individual location preferences. 

Individuals are free to move to their countries of preference. The individual location preferences 

(microstate) and the aggregate migration flow (macrostate) have the same information content, 

which is entropy in information theory2. The information contained in the location preferences are 

transferred without noise to the migration flow. Formulated differently, the actions coincide with 

the aspirations. Everyone is capable of acting on one’s preferences. Immigration quota reduce the 

freedom of movement. The effect of quota on the individual capabilities to move to one’s country 

of preference is measured by the change in information content. A measure of change in 

information content, which originated in information theory and is widely used across the 

disciplines, is the Kullback-Leibler (KL) information divergence. That measure is also used in this 

paper. A migration flow that satisfies the immigration restrictions and best reflects individual 

location preferences is the migration flow that carries as much information on the individual 

location preferences as possible. To obtain that flow, the KL information divergence is minimized. 

An interesting observation is that the migration flow is also the most probable flow, given the 

immigration quota and the individual preferences. The migration flow that minimizes the KL 

information divergence also maximizes the likelihood of the flow given the constraints. The 

duality between maximum entropy and maximum likelihood is well-established (Good, 1963). It 

provides a productive approach to bridge the divide between population-level modelling and 

individual-level modelling. The multinomial distribution is pivotal in bridging the micro and 

macro perspectives.  

The role of individual preferences in shaping aggregate migration flows depend on restrictions 

imposed on the flows. Restrictions reduce the influence of preferences. The nature of the reduction 

of in addressed in the paper. In the absence of restrictions, the preferences fully determine the 

migrant flows, as expected. In the presence of immigration quota, the absolute values of location 

preferences become irrelevant, but ratios of location preferences, i.e. relative preferences, and 

ratios of relative preferences become the relevant quantities. A relative preference may be thought 

of as the preference of one individual relative to that of another individual in the population. 

Suppose two individuals prefer to move to the same region. One individual has a strong 

preference and the other a mild preference because she finds other regions attractive too, then, in 

the presence of immigration quota, the first individual has a higher probability to move to the 

preferred region than the second individual. It is therefore the relative preference that matters. A 

general observation is that immigration restrictions affect lower-order dependencies, but leave 

higher-order dependencies intact. That important observation warrants a discussion of 

dependence structures in directional migration flow (last subsection of section 2). Individual 

differences in location preferences have a systematic component, determined by manifest 

differences between individuals, and a random component due to unobserved differences. The 

 

2 Recall the two notions of entropy. Boltzmann or configurational entropy is the logarithm of the number of microstates 

that are consistent with a given macrostate. In information theory, entropy measures the information content of a 

macrostate. A formal treatment of the two concepts is given in Section 2.1.  
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random component is often associated with the subjective nature of place utilities individuals 

attach to places. The model captures the subjectivity of place utilities by adding a random 

component to place utilities. It turns to the proposed actor-based model into random utility 

discrete choice model. The link is demonstrated formally in Section 2. Here too, the multinomial 

distribution plays a pivotal role.   

The model needs a procedure that describes how individuals respond to the presence of 

immigration quota. To accommodate that requirement, a distinction is made between proposed 

actions and actual actions. An individual who desires to migrate applies for admission in the 

preferred country of residence (proposed action). The government decides to accept or reject the 

application, based on eligibility and admissibility criteria, e.g. the number of applications accepted 

should not exceed the immigration quota. This simple approach resembles procedures adopted in 

practice. For instance, each year, millions of people apply for a total of about 55,000 immigrant visa 

offered in the Diversity Immigrant Visa programme of the United States, also known as the Green 

Card Lottery. Beneficiaries are randomly selected from applicants who meet the criteria. Other 

countries, e.g. Canada, use a point system that assigns scores to applicants3. By distinguishing 

proposed and actual actions, complex selection criteria can be accommodated.  

A final issue that needs to be clarified is how, in the model, individual location preferences are 

formed and influence actions. As already mentioned, the path from desire to action can be long 

and bumpy. Using the theory of planned behaviour (Fishbein and Ajzen , 2010), Klabunde et al. 

(2017) propose a model of migration that incorporates preference formation and the influence of 

preferences on actions. In this paper, a different strategy is adopted. The rational is that utility-

based preference formation is not an essential component of the model in the paper. I assume that 

location preferences are revealed by past migration flows. It is essentially the revealed preference 

theory introduced by Samuelson (1938) in economics to resolve limitations of utility theory 

discussed at that time. Revealed preferences assume that actual behaviour is indicative of 

preferences. According to Samuelson, not desires, aspirations or statements about preferences 

(stated preferences) matter, but the actions that result. Sen (1999) disagrees. In his capability 

approach, he emphasizes that turning aspirations into actions requires resources many people do 

not have. If data permit, revealed preferences may be replaced by stated preferences or aspirations, 

provided they are good predictors of migration, or by elaborate theories of how preferences are 

formed and motivate  actions.  

The proposed model is applied to global migration flows. To that end, the world is viewed as a 

system of countries, grouped into six regions: (1) EU+EFTA+UK, (2) USA and Canada, (3) Latin 

America and the Caribbean, (4) Africa, (5) Asia, and (6) rest of the world. Individuals migrate 

between the regions of this multiregional system, but the migration is constrained by immigration 

quota imposed by governments. The data consists of lifetime migration and recent migration 

between all countries and territories of the world during the period 1990-2020. The lifetime 

migration estimates (migrant stocks) are made available by the United Nations. They are based on 

official statistics on populations country of residence and country of birth, reported in censuses, 

 

3 See https://www.canada.ca/en/immigration-refugees-citizenship/corporate/publications-manuals/operational-bulletins-

manuals/permanent-residence/economic-classes.html for a description of the procedure and Nalbandian (2021) on the 

algorithms used to facilitate the selection process. In FY2020, 23.2 million individuals applied 

(https://travel.state.gov/content/dam/visas/Diversity-Visa/DVStatistics/DV-applicant-entrants-by-country-2019-

2021.pdf). During the last years, the number of visas issued was considerably less than the number of lottery winners 

due to administrative factors (https://www.forbes.com/sites/andyjsemotiuk/2021/10/27/winners-of-us-diversity-green-

card-lottery-seek-ways-to-immigrate/). 

https://www.canada.ca/en/immigration-refugees-citizenship/corporate/publications-manuals/operational-bulletins-manuals/permanent-residence/economic-classes.html
https://www.canada.ca/en/immigration-refugees-citizenship/corporate/publications-manuals/operational-bulletins-manuals/permanent-residence/economic-classes.html
https://travel.state.gov/content/dam/visas/Diversity-Visa/DVStatistics/DV-applicant-entrants-by-country-2019-2021.pdf
https://travel.state.gov/content/dam/visas/Diversity-Visa/DVStatistics/DV-applicant-entrants-by-country-2019-2021.pdf
https://www.forbes.com/sites/andyjsemotiuk/2021/10/27/winners-of-us-diversity-green-card-lottery-seek-ways-to-immigrate/
https://www.forbes.com/sites/andyjsemotiuk/2021/10/27/winners-of-us-diversity-green-card-lottery-seek-ways-to-immigrate/
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population registers and surveys. From these migrant stock data, Abel (2013, 2018), Azose and 

Raftery (2019) and other scholars estimated migration flows between all countries of the world 

during periods of 5 years from 1990 to 2020. Abel and Cohen (2019) and Berlemann et al. (2021) 

evaluate the estimation methods used by different scholars. Abel and Cohen conclude that the 

Azose and Raftery method, which combines demographic accounting and the pseudo-Bayesian 

approach, is the preferred method. The estimates produced by the Abel and Cohen using the 

Azose-Raftery method are used for this paper. By way of illustration, the model is used to predict 

the migration flow between the six regions during the period 2015-20 based on (a) immigration 

quota during that period and (b) the location preferences revealed by the migration flow during 

the period 1995-2000. Since real data on immigration quota for all countries of the world are 

missing, hypothetical quota are used. They are based on the number of immigrants during the 

period 2015-20, for reasons explained in the paper. The use of migration patterns during a past 

period for predicting current and future migration flows is an established practice in internal 

migration research and justified by the stability of migration patterns in time. International 

migration flows exhibit stable patterns too, motivating Bijak (2010, p. 97), Azose et al. (2016), Bijak 

et al. (2019) and others to view international migration as an autoregressive process based on the 

“inertia of self-perpetuating migration patterns”. Bijak et al. (2019) assessed several time series 

models of migration and found that the performance of autoregressive models, which assume 

stationary processes, is acceptable only when migration patterns are stable (p. 477). Abel et al. 

(2021) showed that, in addition to flows, international migration networks have been remarkably 

stable over time. The empirical observations are consistent with migration theory (Massey et al., 

1993). The theory and the empirical evidence provide the rationale for using past migration flows 

as indicative of location preferences.  

The paper consists of five sections. Section 2 presents the multilevel multiregional probability 

model. It also presents a method to estimate migrant transition probabilities from revealed location 

preferences and information on immigration quota. The method is based on information theory. In 

Section 3, the model disregards individual uniqueness (individuals are not uniquely identified by 

IDs) and is applied to predict the macrosystem. The model is presented as an extension of the 

classical multiregional model. The model predicts the population distribution at t+1 from the 

distribution at t and migrant transition probabilities that are based on location preferences and 

restricted by immigration quota. The result of the population-level model will be used as a 

benchmark to validate the actor-based model. In Section 4, individuals are uniquely defined by IDs 

and the model is used to predict the microsystem. A virtual population is defined and ach member 

of that population is followed longitudinally during the period from t to t+1. To accommodate the 

randomness inherent in individual behaviour, the model is reformulated as a random walk in a 

system of regions. The random walk is biased by individual location preferences and restricted by 

the presence of immigration quota. A random walk perspective on migration has been proposed 

previously by a number of authors. The models presented in Sections 3 and 4 are strongly 

influence by the Schelling (1971) model. The influence of the Schelling model is made explicit in 

subsection 3.1. Section 5 concludes the paper and lists a number of ways forward. The paper has 

three annexes. Annex A is a simple illustration of the essentials of entropy maximization. Annex B 

gives a detailed description of the data used in the paper. Annex C describes how to create a 

virtual population. The model is programmed in R. 

2 Multiregional probability model: probabilistic framework 

that integrates micro and macro 
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Multiregional population models describe the distribution of a population in a system of regions. 

Each member of a population occupies a place of residence. The place can be any geographical 

unit, from neighbourhood to group of countries. In this paper, place generally refers to a country 

or a group of countries. The place of residence is also referred to as location. Population-based 

models do not differentiate between similar individuals in a same location. Individual-based 

model differentiate between individuals; each individual is identified by a name or identification 

number (ID). The spatial distribution of the population changes in time due to migration, births 

and deaths. In this paper, births and deaths are disregarded. 

The model integrates micro (individual level) and macro (population level) in a single framework. 

The framework encompasses the notions of microstate and macrostate of a system, referred to in 

the introduction. More importantly, however, the model is fully consistent with established spatial 

interaction models of migration. To demonstrate the consistency, a spatial interaction model is 

presented that incorporates individual variability. It relies on insights obtained by McFadden, 

who, in the 1970s, showed that the description of individual variability by a particular probability 

distribution results in a population-level model with desired properties. It was the start of discrete 

choice modelling under uncertainty.  

The section consists of four subsections. The first presents the individual-based model of 

population distribution at a point in time. In the second, the model is extended to two points in 

time. The model predicts the number of stayers and migrants, and identifies who stays and who 

moves. The introduction of place utilities and location preferences turns the model into a discrete 

choice model. The introduction of immigration quota and other restrictions makes the model more 

realistic. The third subsection covers the basic principles underlying the estimation of the model. 

The final subsection zooms in on the origin-destination dependencies exhibited by a migration 

flow matrix.  

A number of concepts are used in this section that are linked to multistate models. Two core 

concepts are state probability and transition probability. A state probability is the probability that 

an individual resides in a given location, one of the possible locations. The state probability varies 

in time. Therefore, it includes a time index. The transition probability is the probability that an 

individual, who resides in a particular location (i, say) at the beginning of a time interval, resides 

in a given other place (j, say) at the end of the interval. The transition probability is a conditional 

probability. Since the transition of interest is change of residence, the transition probability is also 

referred to as migrant transition probability to prevent confusion with the migration probability, which 

is the probability of the event of migration (change of residence) at least once during an interval.   

2.1 State occupancies 

Consider a population of n unrelated and independent individuals and let k denote a certain 

individual. Each individual is assigned a unique identifier (ID). Let 𝑋(𝑡)𝑘  be a random variable 

denoting the location of individual k at time t, with 𝑋(𝑡)𝑘 ∈ 𝑅 and 𝑅 the set of possible locations 

(𝑅 ∈ {1, 2, 3, … . , 𝑟}). The number of possible locations is r. Because R is finite, 𝑋(𝑡)𝑘  is a discrete 

random variable. 𝑋(𝑡)𝑘  may be viewed as outcomes of n independent trials at t (k=1, …, n) (which 

leads to the multinomial distribution of 𝑋(𝑡)𝑘 ). In many cases, we are not interested in a specific 

individual, but in randomly selected individual. In that case, the subscript k is omitted. 𝑋(𝑡)𝑘  has 

several possible values. The value that is observed at time t is a realization of 𝑋(𝑡)𝑘  and denoted 

by 𝑥𝑘 (𝑡). Several individuals may occupy the same location. To facilitate the counting of 

individuals, an indicator variable is introduced. Let 𝑋𝑖 (𝑡)𝑘  be an indicator variable that takes on 
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value 1 if individual k is in location i at time t and 0 otherwise: 𝑋𝑖 (𝑡) =𝑘 𝑖𝑛𝑑( 𝑋(𝑡)𝑘 = 𝑖). The 

number of individuals in location i at time t is 

 

𝑋+ 𝑖 (𝑡) = ∑ 𝑋𝑖 (𝑡)𝑘

𝑛

𝑘=1
= ∑ 𝑖𝑛𝑑( 𝑋(𝑡) = 𝑖𝑘 )

𝑛

𝑘=1
(2.1) 

 

Since the total population size at time t is fixed at n(t), the probability that the sum ∑ 𝑋+ 𝑖 (𝑡)𝑟
𝑖=1  is 

equal to n(t) is one. The (unknown) number of individuals in location i may be expressed as a 

proportion of the total.  

The locations of individuals are unknown, but some aggregate information on the population is 

available. Let the set 𝒏(𝑡) = {𝑛1(𝑡), 𝑛2(𝑡), 𝑛3(𝑡), … , 𝑛𝑟(𝑡)} give the distribution of the population in 

the system at time t. An element 𝑛𝑖(𝑡) is the count of individuals in i at t.  The vector 𝒏 describes 

the system at the aggregate level, i.e. the macrostate of the system. The microstate of the system has 

the location of each individual member of the population. Many different microstates may 

produce the same macrostate 𝒏. When two individuals exchange or swap their location, the 

microstate of the system changes but the macrostate is not affected. The number of individuals that 

can exchange their location, and hence the number of microstates, depends on the distribution of 

the population. The number is largest when the population is uniformly distributed in space. If all 

individuals are concentrated in one location, they cannot exchange locations and the macrostate 

has a single microstate only. Boltzmann called the number of microstates associated with a given 

macrostate the multiplicity of the macrostate, and denoted it by W. He called the logarithm of W 

the entropy of the macrostate. He used W to determine the most probable macrostate. The most 

likely macrostate is the one with the highest number of microstates, i.e. which maximizes W and ln 

W. This definition of entropy is known as configuration entropy. It differs from the entropy 

concept used in information theory, which is rooted in probability theory (see further). 

Maximization of the configuration entropy is known as the combinatorial approach to entropy 

maximization because it relies on combinatorics (the mathematics of combinations and 

permutations) (see e.g. Niven, 2009). The entropy of a macrostate is a measure of uncertainty 

because the higher the number of microstates that are consistent with a given macrostate, the 

higher the uncertainty about which microstate produces the macrostate (for a discussion see 

Bawden and Robinson, 2015). Entropy maximization is a guiding principle in assigning 

probabilities to events and transitions. In this paper, entropy maximization is used to determine 

the most probable migration flow (macrostate).  

Let 𝑝𝑘 𝑖(𝑡) denote the probability that individual k is in location i at time t: 𝑝𝑘 𝑖(𝑡) =

𝑃𝑟{ 𝑋(𝑡)𝑘 = 𝑥𝑖 = 𝑖} = 𝑃𝑟{ 𝑋𝑖(𝑡)𝑘 = 1}. In general, different individuals have different probabilities 

of residing in i at t. The individual probability depends on personal characteristics, situational or 

contextual factors, and individual life histories. In addition, the probability that k is in i may 

depend on the location of other individuals, most likely individuals that who are similar to k or 

related to k. If all individuals have the same probability to be in location i, then 𝑝𝑘 𝑖(𝑡) = 𝑝𝑖(𝑡) for 

all k. The probability that the number of individuals in region i is equal to 𝑛𝑖(𝑡) is 

𝑃𝑟{ 𝑋+ 𝑖 (𝑡) = 𝑛𝑖(𝑡)}. The expected number of individuals in i at t is 𝐸[ 𝑋+ 𝑖 ] = 𝑝𝑖(𝑡) 𝑛(𝑡) and the 

variance is 𝑉𝑎𝑟[ 𝑋+ 𝑖 ] = 𝑝𝑖(𝑡) [1 − 𝑝𝑖(𝑡)] 𝑛(𝑡).  The index t is omitted for convenience, unless it is 

needed to prevent ambiguity. 
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The probability of observing macrostate 𝒏 is a multinomial distribution with parameters 

{𝑝1, 𝑝2,… , 𝑝𝑟}. The multinomial distribution plays a crucial role in the model proposed in this 

paper. Therefore the distribution is some detail. In particular, the distribution is used to clarify the 

difference between the Boltzmann entropy and the entropy concept used in information theory. 

That distinction is important because the estimation of migration flows traditionally relies on the 

Boltzmann entropy, following Wilson (1970)’s seminal work, whereas more recent approaches are 

rooted in information theory. Since the two approaches exists side by side and the entropy concept 

causes much confusion, this section of the paper includes a relative extensive discussion of the 

entropy concept in and its relation to the multinomial distribution. A historical perspective is 

considered the best approach to dissolve the confusion. The probability that location 1 has 𝑛1 

residents, location 2  𝑛2 residents, etc., with ∑ 𝑛𝑖 = 𝑛𝑟
𝑖=1  and n given, is  

𝑃𝑟{ 𝑋+ 1 = 𝑛1 , 𝑋+ 2 = 𝑛2 , … , 𝑋+ 𝑟 = 𝑛𝑟} =
𝑛!

𝑛1!  𝑛2!… 𝑛𝑟!
 𝑝1

𝑛1𝑝2
𝑛2 … 𝑝𝑟

𝑛𝑟 (2.2) 

The multinomial distribution is 𝑀: 𝑛, 𝑝1, 𝑝2,… , 𝑝𝑟 with index n (given) and parameters 𝑝1, 𝑝2,… , 𝑝𝑟 . 

Since ∑ 𝑝𝑖
𝑟
𝑖=1 = 1 (follows from fixing the population size), the multinomial distribution has r-1 free 

parameters. Hence a reference category must be introduced to make sure that parameter values are 

unique (see further). The multinomial distribution (2.2) consists of two terms. The second term is 

the probability of a particular microstate that is consistent with macrostate 𝒏. The first term is the 

multiplicity of the macrostate, i.e. the number of microstates that are consistent with the 

macrostate: 𝑊 =
𝑛!

𝑛1! 𝑛2!… 𝑛𝑟!
. The multinomial distribution bridges the micro- and macro-level 

descriptions of the system of regions.  

If all individuals are independent and all locations are equally likely, then 𝑝𝑖 = 𝑝 =
1

𝑟
 for all i and 

the probability of a particular micro-level configuration is 𝑟−𝑛. The number of microstates is 𝑟𝑛 

and all microstates are equally likely. In another hypothetical situation in which the population 

size tends to infinity, the observed proportion of the population in location i tends to the true 

probability:  
𝑛𝑖

𝑛
→ 𝑝𝑖 and 𝑛𝑖 → 𝑛𝑝𝑖. In that situation, the probability of a microstate that is consistent 

with macrostate 𝒏 is 𝑝𝑚𝑖𝑐(𝒏): 

𝑝𝑚𝑖𝑐(𝒏) = ∏ 𝑝𝑖
𝑝𝑖 𝑛

𝑟

𝑖=1
(2.3) 

It is the probability of observing a particular spatial distribution of individual IDs or an ordered 

sequence of individual IDs. The logarithm of a particular micro-level configuration is  

𝑙𝑛(𝑝𝑚𝑖𝑐(𝒏)) = 𝑛∑ 𝑝𝑖 log 𝑝𝑖

𝑟

𝑖=1
= −𝑛 𝐻 

where 

𝐻 =
1

𝑛
𝑙𝑛

1

𝑝𝑚𝑖𝑐(𝒏)
(2.4)

and 
1

𝑝𝑚𝑖𝑐(𝒏)
  is the expected number of microstates. It is a function of H:  

1

𝑝𝑚𝑖𝑐(𝒏)
= 𝑒𝑥𝑝[𝑛𝐻]. H is the 

entropy concept introduced by Shannon (1948), the founder of information theory. It is the expected 

information content of observing the location of a random individual. The multinomial 

distribution demonstrates the difference between the Boltzmann entropy and the Shannon 
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entropy. Boltzmann focused on the first term of the multinomial distribution and assumed that all 

microstates are equally probable. Shannon entropy emerges from the second term.  

Gibbs (1902) extended Bolzmann’s work by removing the assumption that all microstates are 

equally probable. He found that some microstates are more probable than other. He introduced the 

probability distribution of microstates and defined entropy as a measure of uncertainty in the 

probability distribution of microstates. The Gibbs approach to entropy became known as the 

probabilistic approach. The combinatorial and the probabilistic approaches exist side by side. The 

Gibbs entropy concept coincides with that of Shannon. Gibbs concentrated on measuring the level 

of uncertainty, while Shannon concentrated on the amount of information needed to reduce the 

uncertainty to an acceptable level. When a system is in equilibrium the Boltzmann entropy agrees 

with the Gibbs and Shannon entropy (Jaynes, 1965). Jaynes (1957a, 1957b) introduced the 

maximum entropy principle into statistics and showed that entropy maximization offers a unified 

framework for statistical inference when data are incomplete and knowledge is limited. He 

adopted the probabilistic approach to entropy maximization. The approach is consistent with 

Shannon (1948)’s information theory (Jaynes, 2003). Entropy maximization is a mathematical 

programming problem of maximizing an objective function subject to one or several constraints. 

The objective function is not a simple function but a set of functions (sum or integral). The problem 

is solved using calculus of variation (variational principle), which relies on the method of 

Lagrange multipliers. For a relatively recent review of the principle of entropy maximization, its 

spread across disciplines, and its extension to determine most probable paths or trajectories, see 

Pressé et al. (2013). Entropy maximization is currently the dominant method for estimating 

migration flows in the presence of different types of prior information (see Section 2.3). The 

probabilistic approach to entropy is used in this paper. Note that maximization of (2.1) gives 

maximum likelihood estimates of 𝑝1, 𝑝2, … , 𝑝𝑟. Good (1963) proved the duality between maximum 

entropy and maximum likelihood.  

Since the total population size is fixed and ∑ 𝑝𝑖 = 1𝑟
𝑖=1 , the multinomial distribution has r-1 

independent parameters. To make the parameters identifiable, a reference category (reference 

location) and a normalization constant are needed. Let 𝑟′ denote the reference category. The odds 

that a randomly selected individual is in location i rather than in the reference location is 
𝑝𝑖

𝑝𝑟′
. The 

logarithm of the odds is the logit 𝜂𝑖 = ln
𝑝𝑖

𝑝𝑟′
= ln

𝑝𝑖

1−∑ 𝑝𝑗𝑗≠𝑟′
 . The logit of the reference location is 0, 

hence 𝜂𝑟′ = 0. The probability that a randomly selected individual is in the reference location is 

𝑝𝑟′ =
1

∑ exp (𝜂𝑗)
𝑟
𝑗=1

. The probability that the individual is in i is  𝑝𝑖 =
𝑒𝑥𝑝[𝜂𝑖]

∑ exp (𝜂𝑗)
𝑟
𝑗=1

. This are well-known 

expressions in multinomial logit models and multinomial logistic regression. The denominator is a 

normalization factor to ensure that the probabilities sum to one. The normalization factor is also 

known as the partition function, a term first used in statistical mechanics4. It represents a statistical 

ensemble, that is a set of microstates a system can be in. The normalization factor encodes how the 

total population in the system is partitioned among the different microstates. That explains why 

the factor is also called partition function. 

2.2  Transition probabilities 

This section consists of four subsections. First, an individual-based model (IBM) of relocation is 

presented (subsection a). Change of residence is measured by comparing the place of residence at 

two points in time. The model is restricted to actual relocations, without any reference to place 

 

4 In thermodynamics, one over the normalization factor is the Boltzmann factor. 
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utilities or preferences. This explains the reference to individual-based model and not to actor-

based model. In subsection b, preferences and location choices are introduced. Individuals are 

given some agency. An individual attaches a utility to possible locations and the utility attached 

determines the individual’s preferred location. The place utility an individual assigns to a place 

depends on (a) observed and unobserved place attributes and (b) the individual’s observed and 

unobserved personal attributes. Place utility is subjective. If several attributes jointly determine the 

utility individual k attaches to place j, then the expected place utility is used, consistent with the 

expected utility theory (for details, see Willekens, 2021). The expected utility of a set of places 

combined is the sum of the utilities individual k attaches to each of the places, weighted by the 

probability of a relocation to that place. The addition of place utilities and location preferences 

extends the IBM to a choice model, in which the relocation is the outcome of a discrete choice 

model. In subsection c, accessibility is introduced: destinations vary in accessibility. Destinations 

that are near demand less financial resources than destinations that are distant. Cultural 

differences and differences in language also reduce accessibility. In the fourth subsection, a 

particular type of accessibility restriction is introduced: the restriction of the number of 

immigrants. The addition of agency, variation in accessibility and immigration restrictions affect 

the migrant transition probabilities in particular ways. Note that the proposed model covers all 

individuals in the population of size n, also the individuals who are satisfied with their current 

place of residence and have no desire to move.  

2.2.1 Migration transition 

 

The probability that individual k is in i at time t and in j at t+1 is the joint probability: 

𝑃𝑟{ 𝑋(𝑡)𝑘 = 𝑖, 𝑋(𝑡 + 1)𝑘 = 𝑗}. The joint probability may be expressed as the product of a marginal 

probability and the associated conditional probability: 

𝑃𝑟{ 𝑋𝑘 (𝑡) = 𝑖, 𝑋𝑘 (𝑡 + 1) = 𝑗} = 𝑃𝑟{ 𝑋𝑘 (𝑡 + 1) = 𝑗| 𝑋𝑘 (𝑡) = 𝑖} 𝑃𝑟{ 𝑋𝑘 (𝑡) = 𝑖} (2.5) 

with 𝑃𝑟{ 𝑋𝑘 (𝑡) = 𝑖} the probability that k is in i at t (marginal probability) and 𝑃𝑟{ 𝑋𝑘 (𝑡 + 1) =

𝑗| 𝑋𝑘 (𝑡) = 𝑖} the conditional probability that k is in j at t+1, provided k is in i at t. The probability 

that k is in location i at t is referred to as location probability and denoted by 𝑝𝑖(𝑡)𝑘 . In probability 

theory and multistate demography, it is known as the state probability, the probability that 

individual k occupies state i of the state space 𝑅 ∈ {1, 2, 3, … . , 𝑟}. The conditional probability is 

referred to as transition probability and denoted by 𝑝𝑗|𝑖𝑘 (𝑡, 𝑡 + 1), which is more conveniently 

written as 𝑝𝑖𝑗𝑘 (𝑡, 𝑡 + 1). The probability that k is in j at t+1 is  

𝑝𝑗𝑘 (𝑡 + 1) = ∑ 𝑝𝑖𝑗𝑘 (𝑡, 𝑡 + 1) 𝑝𝑖𝑘 (𝑡)
𝑟

𝑖=1
(2.6) 

which is known as state equation. It expresses the state probability at t+1 in terms of the state 

probabilities at t and the transition probabilities. It is the fundamental equation of multiregional 

population models (see e.g. Rogers, 1995, Chapter 2). However, it does not apply to the 

population, but to individual k.   

The joint distribution may also be written as the marginal probability that individual k is in j at 

time t+1 and the conditional probability that k is in i at t, provided k is in j at t+1: 

𝑃𝑟{ 𝑋𝑘 (𝑡) = 𝑖, 𝑋𝑘 (𝑡 + 1) = 𝑗} = 𝑃𝑟{ 𝑋𝑘 (𝑡) = 𝑖| 𝑋𝑘 (𝑡 + 1) = 𝑗} 𝑃𝑟{ 𝑋𝑘 (𝑡 + 1) = 𝑗} (2.7) 

The conditional probability is a recruitment probability. It is the probability that individual k who is 

admitted to j is recruited from i, i.e. originated in i. The recruitment probability is also known as 
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the admission probability. The recruitment probability may be computed from the transition 

probability and state probabilities. From (2.5) and (2.7) we have: 

𝑃𝑟{ 𝑋𝑘 (𝑡) = 𝑖| 𝑋𝑘 (𝑡 + 1) = 𝑗} = 𝑃𝑟{ 𝑋𝑘 (𝑡 + 1) = 𝑗| 𝑋𝑘 (𝑡) = 𝑖} 
𝑃𝑟{ 𝑋𝑘 (𝑡) = 𝑖}

𝑃𝑟{ 𝑋𝑘 (𝑡 + 1) = 𝑗}
(2.8) 

The expression is similar to the Bayes formula and the derivation is the same, but the 

interpretation is different. Equation (2.8) can be given a Bayesian interpretation, but that is beyond 

the scope of this paper. Transition and recruitment probabilities are the main parameters of the 

multiregional model with immigration constraints. 

State probabilities may be combined in the state vector 𝑺𝑘 (𝑡) with elements 𝑝𝑘 𝑖(𝑡) and the 

transition probabilities in the transition matrix 

𝑷𝑘 (𝑡, 𝑡 + 1) =

[
 
 
 
 
 𝑝𝑘 11(𝑡, 𝑡 + 1) 𝑝𝑘 12(𝑡, 𝑡 + 1) 𝑝𝑘 13(𝑡, 𝑡 + 1) ⋯ 𝑝𝑘 1𝑟(𝑡, 𝑡 + 1)

𝑝𝑘 21(𝑡, 𝑡 + 1) 𝑝𝑘 22(𝑡, 𝑡 + 1) 𝑝𝑘 23(𝑡, 𝑡 + 1) ⋯ 𝑝𝑘 2𝑟(𝑡, 𝑡 + 1)

𝑝𝑘 31(𝑡, 𝑡 + 1) 𝑝𝑘 32(𝑡, 𝑡 + 1) 𝑝𝑘 33(𝑡, 𝑡 + 1) ⋯ 𝑝𝑘 (𝑡, 𝑡 + 1)
⋮ ⋮ ⋮ ⋮ ⋮

𝑝𝑘 𝑟1(𝑡, 𝑡 + 1) 𝑝𝑘 𝑟2(𝑡, 𝑡 + 1) 𝑝𝑘 𝑟3(𝑡, 𝑡 + 1) ⋯ 𝑝𝑘 𝑟𝑟(𝑡, 𝑡 + 1)]
 
 
 
 
 

(2.9) 

The element 𝑝𝑘 𝑖𝑗(𝑡, 𝑡 + 1) denotes the probability that k who resides in location i at time t resides 

in j at time t+1. The diagonal element 𝑝𝑘 𝑖𝑖(𝑡, 𝑡 + 1) is the probability that k, who is in i at t, is also in 

i at t+1. It does not imply that k stays in i from t to t+1 on a continuous basis. Repeated emigrations 

and return migrations are allowed. The probability distribution of the possible locations at t+1 is  

[ 𝑺𝑘 (𝑡 + 1)]
′
= [ 𝑺𝑘 (𝑡)]

′
 𝑷𝑘 (𝑡, 𝑡 + 1) (2.10) 

with [ 𝑺𝑘 (𝑡)]
′
 is a row vector. This is a matrix expression of the fundamental equation in 

multiregional modelling, but it is specified at the individual level. Note that the convention in 

multiregional demography is to write 𝑺𝑘 (𝑡) as a column vector and to use the transpose of the 

transition probability matrix (2.9).   

The model may be extended by including covariates and contextual factors, i.e. drivers of 

migration. The transition probability becomes 

𝑝𝑖𝑗(𝑡, 𝑡 + 1)𝑘 = 𝑃𝑟{ 𝑋𝑘 (𝑡 + 1) = 𝑗| 𝑋𝑘 (𝑡) = 𝑖; Φ𝑘 (0, 𝑡)} 

with Φ𝑘 (0, 𝑡) the values of the relevant covariates of k and the contextual factors that influence the 

probability that k, who is in i at t, is in j at t+1.  

The expected gross migration flow from i to j is  

𝐸[𝑛𝑖𝑗(𝑡, 𝑡 + 1)] = ∑ 𝑝𝑖𝑗(𝑡, 𝑡 + 1)𝑘
𝑘

 𝑝𝑖(𝑡)𝑘 (2.11) 

where summation is over all individuals in the population. In case the individuals are identical: 

𝐸[𝑛𝑖𝑗(𝑡, 𝑡 + 1)] = 𝑝𝑖𝑗(𝑡, 𝑡 + 1) 𝑝𝑖  (𝑡) 𝑛(𝑡).  

2.2.2 The motives of relocation: place utilities and location preferences 

People prefer places for various reasons: employment, to be close to family, safety, etc. The value 

attached to a place is summarized in the place utility concept (for details, see Willekens 2021). The 

utility an individual attaches to a places is subjective; it is based on incomplete and often coloured 

knowledge about places. Furthermore, places have multiple attributes and individuals weight 
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attributes differently, which gives rise to a utility function. The place utility predicted by the utility 

function is a multi-attribute utility (Smith, 2010, Chapter 6). In the Schelling model, place is a 

neighbourhood and the place utility is determined by a single place attribute; namely, the ethnic 

composition of a neighbourhood. In international migration models, places are countries and the 

utilities individuals assign to places depend on job opportunities, family or other relationships in 

the country, physical and social protection, and other place attributes. Individuals differ in what 

they consider relevant at a given point in time. It depends, for instance, on the stage in the life 

course. A consequence is that individuals differ in the places they consider plausible destinations 

(choice set). A consequence of the incomplete knowledge is that the utility an individual attaches 

to a place is not determined entirely by the objective and observable characteristics of that place. 

Unobservable or latent place characteristics and subjective factors influence the individual place 

utility. Place utility is a subjective degree of belief that a place meets desires or aspirations. A place 

with a high place utility is attractive. 

To distinguish the utility associated with observables and the utility associated with 

unobservables, the place utility consists of two components: a deterministic component and a 

stochastic component. The stochastic component is in fact a composite measure of multiple 

uncertainties. One random component may be defined for unobserved differences between 

individuals, including differences in taste, and another for unobserved differences between places, 

but that is not done in this paper. Let 𝑈𝑘 𝑗 denote the utility individual k attaches to place j: 

𝑈𝑘 𝑗 = 𝑣𝑘 𝑗 + 𝜀𝑘 𝑗   𝑤𝑖𝑡ℎ 𝑗 ∈ 𝑅 (2.12) 

with 𝑅 the set of possible locations, 𝑣𝑘 𝑗the individual-specific deterministic component of utility 

and  𝜀𝑘 𝑗 the stochastic component. The utility 𝑈𝑘 𝑗 is a random variable. Although the utility may 

change in time, time is omitted for convenience. 𝑣𝑘 𝑗 may be replaced by a utility function in which 

place utility is a weighted sum of several place attributes and depends on personal attributes. The 

stochastic component is an idiosyncratic individual-specific term. It is the unobserved utility 

associated with latent characteristics that influence the attractiveness of j and individual 

differences in values and taste. For a recent discussion in the context of international migration, see 

Beine et al. (2021). If the distribution of the random component in a population is known, the value 

of the random component in k’s place utility function, 𝜀𝑘 𝑗, is obtained by a random draw from the 

distribution. Different distributions are used in random utility theory and discrete choice models. 

For a recent overview, see Haghani et al. (2021). One distribution is particularly interesting, 

namely, the Extreme Value distribution or Gumbel distribution (see further).  

The absolute value of the utility an individual attaches to a place is not really relevant. What 

matters is the relative place utility (Train, 2009, p. 29; Beine et al., 2021). An individual’s preference 

for a place depends on the subjective utility attached to that place relative to the utility attached to 

the other places that the individual considers possible places of residence. Relocation is motivated 

by perceived differences in place utility. Most people attach a relatively high utility to their current 

place of residence, in part because of the locational capital (Willekens, 2021). They have no 

motivation to move unless their situation changes drastically.  

A common decision rule people use to determine the preferred region of residence is to select the 

place with the highest place utilities or one of the places with a sufficiently high place utility. If the 

favourate location is the one with the highest place utility, then the probability that k prefers j over 

other regions in the choice set is the probability that region j has a higher place utility than any 

other region in the system of regions: 

𝑝𝑗𝑘 = 𝑃𝑟{ 𝑋𝑘 = 𝑗} = 𝑃𝑟{ 𝑈𝑘 𝑗 > 𝑈𝑘 ℎ  𝑓𝑜𝑟 𝑎𝑙𝑙 ℎ ≠ 𝑗} 
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= 𝑃𝑟{ 𝑣𝑘 𝑗 + 𝜀𝑘 𝑗 > 𝑣𝑘 ℎ + 𝜀𝑘 ℎ    𝑓𝑜𝑟 𝑎𝑙𝑙 ℎ ≠ 𝑗} 

= 𝑃𝑟{ 𝜀𝑘 ℎ − 𝜀𝑘 𝑗 < 𝑣𝑘 𝑗 − 𝑣𝑘 ℎ  𝑓𝑜𝑟 𝑎𝑙𝑙 ℎ ≠ 𝑗} (2.13) 

The probability that k selects j is the probability that the difference in utility derived from the 

unobservables is less than the difference in utility derived from observed characteristics, for all 

possible places of residence besides i. The unobserved portion of the utility determines the 

distributions of the utility in a population and therefore the form of the discrete choice model. A 

(multivariate) normal distribution leads to a probit model (Train, 2009, pp. 111ff). McFadden (1974) 

showed that the discrete choice model takes the form of a logit model if the unobserved portions of 

the utility are independent and follow an identical type I extreme value distribution (Gumbel 

distribution) (see also Train, 2009, pp. 41ff). Independence means that the unobserved portions of 

the place utility assigned to the different places are unrelated. Extreme value distributions are the 

limiting distributions for the minimum or the maximum of a large number of independent 

observations from the same arbitrary distribution. The Gumbel distribution has two parameters: a 

location parameter  and a scale parameter >0: 

𝑃𝑟{𝜀 ≤ 𝑦} = 𝑒𝑥𝑝 [−𝑒𝑥𝑝 (−
𝑦−𝛼

𝛽
)] (2.14) 

The standard Gumbel has location parameter 0 and scale parameter 1.  

The difference of two independent extreme value random variates with parameters μ and  is a 

logistic variate with location parameter 0 and scale parameter >0. Let 

𝜀ℎ𝑗
∗ = 𝜀ℎ − 𝜀𝑗  

Then 𝜀ℎ𝑗
∗  follows a logistic distribution: 

𝐹(𝜀ℎ𝑗
∗ ) =

𝑒𝑥𝑝[𝜀ℎ𝑗
∗ ]

1 + 𝑒𝑥𝑝[𝜀ℎ𝑗
∗ ]

=
1

1 + 𝑒𝑥𝑝[−𝜀ℎ𝑗
∗ ]

(2.15) 

𝐹(𝜀ℎ𝑗
∗ ) is the probability that the effect of unobservables on the difference in place utilities assigned 

to regions h and j is less than 𝜀ℎ𝑗
∗  (for a discussion, see Beine et al., 2021, p. 7). By way of 

illustration, two random samples were taken from a Gumbel distribution with location parameter 

=-1 and scale parameter =0.5. Each sample is produced by 10,000 random draws from the 

distribution. The left panel of Figure 2.1 shows the frequency distribution of draws with the 

overlay of the probability density function of the Gumbel distribution with the same parameters. 

The right panel of Figure 2.1 shows the distribution of the differences between individual sample 

values, which is the difference between two Gumbel-distributed random variables. The differences 

follow a logistic distribution with location parameter 0 and scale parameter equal to the scale 

parameter of the Gumbel distribution (=0.5). By way of test, the 10,000 values of the logistic 

random variable given by 𝜀ℎ − 𝜀𝑗  are used to estimate the parameters of a logistic distribution, 

using the general-purpose optimization function optim of R and the Nelder-Mead algorithm. The 

estimated location parameter was -0.00366 and the scale parameter was 0.50726. The estimates are 

close to the values borrowed from the Gumbel distribution. The difference in the random 

components of the place utilities individual k attaches to regions h and j may be obtained by 

drawing a random number from the logistic distribution with location parameter 0 and a scale 

parameter that is proportional to the assumed variance of the logistic distribution. Note that the 

variance of the logistic distribution is 𝜋2 𝛽2 / 3, with  the scale parameter.  
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The distribution assumptions of the unobserved quantities determine the form of the discrete 

choice model and the interpretation of its parameters. The impact of unobserved heterogeneity on 

the interpretation of the coefficients of logit models and the associated logistic regression models 

has been addressed by Mood (2010) and Norton and Dowd (2018). The coefficients of the logistic 

regression models represent not only the effect of a predictor, but confounds the effect of the 

unobserved heterogeneity.  

 

Figure 2.1 Gumbel distribution and logistic distribution 

 

 

 

In the choice model, the probability that individual k prefers region j over any other region is  

𝑝𝑗𝑘 = 𝑃𝑟{ 𝜀𝑘 ℎ − 𝜀𝑘 𝑗 < 𝑣𝑘 𝑗 − 𝑣𝑘 ℎ  𝑓𝑜𝑟 𝑎𝑙𝑙 ℎ ≠ 𝑗} 

𝑝𝑗𝑘 =
𝑒𝑥𝑝[ 𝑣𝑘 𝑗]

∑ 𝑒𝑥𝑝[ 𝑣𝑘 ℎ]ℎ

(2.16) 

The odds that k prefers j is 

𝜃𝑗𝑘 =
𝑝𝑗𝑘

𝑝𝑟′𝑘

=
𝑒𝑥𝑝[ 𝑣𝑘 𝑗]

∑ 𝑒𝑥𝑝[ 𝑣𝑘 ℎ]ℎ

 / 
𝑒𝑥𝑝[ 𝑣𝑘 𝑟′]

∑ 𝑒𝑥𝑝[ 𝑣𝑘 ℎ]ℎ

= 𝑒𝑥𝑝[ 𝑣𝑘 𝑗 − 𝑣𝑘 𝑟′] (2.17) 

where 𝑟′ denotes the reference category. The multinomial logit choice model derives its name from 

the logit expression: 

𝜂𝑘 𝑗 = 𝑙𝑜𝑔𝑖𝑡( 𝑝𝑗𝑘 ) = 𝑙𝑛
𝑝𝑗𝑘

𝑝𝑟′𝑘

= 𝑙𝑛
𝑝𝑗𝑘

1−∑ 𝑝ℎ𝑘ℎ≠𝑟

= 𝑣𝑘 𝑗 − 𝑣𝑘 𝑟′ (2.18) 

with 𝜂𝑘 𝑟′ = 𝑙𝑛
𝑝𝑟′𝑘

𝑝𝑟′𝑘

= 0.  

The numerator of the odds is the place utility k assigns to region j. The denominator is the sum of 

the place utilities assigned by k, i.e. k’s valuation of the total place utility of the system of regions. 
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The denominator may be given another behavioural interpretation. Since ∑ 𝑝𝑗𝑘 = 1𝑟
𝑗=1 , there are 

𝑟 − 1 independent parameters of the multinomial distribution of the choice of destination. To make 

the parameters identifiable, a reference category (reference state) and a normalization constant are 

needed. The probability that k selects r is 𝑝𝑟′𝑘 =
1

∑ exp (𝑣ℎ)𝑟
ℎ=1

. The denominator is a normalization 

factor. It ensures that the probabilities sum to one:  

∑ 𝑝𝑗𝑘

𝑟

𝑗=1
=

1

∑ 𝑒𝑥𝑝[ 𝑣𝑘 ℎ]𝑟
ℎ=1

∑ 𝑒𝑥𝑝[ 𝑣𝑘 𝑗]
𝑟

𝑗=1
= 1 

The probability that k is in region j with place utility 𝑈𝑘 𝑗 is 𝑝𝑗𝑘 . The normalization factor encodes 

how the total utility in the system is partitioned among the different microstates. That explains 

why the factor is also called partition function. If k is indifferent between the regions, including the 

current region of residence, then 𝑣𝑘 ℎ = 𝑣𝑘  and ∑ 𝑒𝑥𝑝[ 𝑣𝑘 ℎ]
𝑟
ℎ=1 = 𝑟′ 𝑒𝑥𝑝[ 𝑣𝑘 ] with r the number of 

regions. Hence the probability that k prefers region j is 1/ 𝑟′.  

The normalization factor has a simple interpretation in information theory. The logarithm of the 

normalization factor is the information content of observing an individual (in this case k) who 

prefers the reference state. The base of the logarithm is the unit of information (Cover and Thomas, 

2006): ln ∑ 𝑒𝑥𝑝[ 𝑣𝑘 ℎ]𝑟
ℎ=1 = ln

1

𝑝𝑘 𝑟′
= − ln 𝑝𝑘 𝑟′  . The expected information content of knowing 

individual k’s preferred location is the entropy of k’s preference distribution5:  

𝐻 = ∑ 𝑝𝑗𝑘

𝑟

𝑗=1
 𝑙𝑛

1

𝑝𝑗𝑘

= −∑ 𝑝𝑗𝑘

𝑟

𝑗=1
𝑙𝑛 𝑝𝑗𝑘 (2.19) 

This gives a behavioural interpretation to the entropy concept. The entropy of the place preference 

distribution is maximum when k is indifferent about the possible destinations, i.e. the place 

utilities are uniformly distributed. In that case, the entropy is equal to the number of regions. If k is 

not interested in any region except one, the entropy is zero. A flat distribution of place utilities has 

a high entropy and a highly skewed distribution a low entropy.  

The logit model implies restrictive assumptions and several extensions have been proposed. A 

characteristic feature of the logit model is that the relative probability of choosing between two 

alternative destinations depends on the attractiveness of these two options. Other alternatives are 

irrelevant (McFadden, 1974). It implies that the ratio 𝑝𝑗𝑘  / 𝑝𝑟′𝑘  does not depend on any 

alternatives other than j and 𝑟′. The odds of choosing j rather than 𝑟′ is the same no matter what 

other alternatives are available or what the attributes of the other alternatives are. The 

independence of the odds from other alternatives is known as the independence from irrelevant 

alternatives or IIA property (Train, 2009, p. 54). While mathematically convenient, this assumption is 

violated in most contexts where discrete choice models are applied (Train, 2009). Beine et al. (2021) 

list several extensions that are needed to make the logit model more realistic. First, stayers and 

intended movers are very different, and foreign destinations are therefore likely to be more 

correlated with each other than with the domestic destination. Second, some foreign destinations 

will be more correlated among themselves compared with others because they share 

characteristics that are unobserved or are not included in the model. The European Union and the 

Schengen area are cases in point. Other areas aim at a free movement of labour, e.g. the African 

Union Protocol on Free Movement of Persons, and the Association of Southeast Asian Nations 

 

5 In information theory, it is a convention that 0 ln(0) = 0. 
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(ASEAN) (Okunade, 2021). Third, random terms are likely to be spatially correlated if migrants 

rationally decide to limit the acquisition of information to a subset of alternatives, if some of their 

(ex-post) observed characteristics have been acquired after moving, or if migration influences the 

distribution of country characteristics. Beine et al (2021) extend the logit choice model to a nested 

model with overlapping nests. Each respondent faces a large choice set, comprising more than 200 

countries worldwide. The nested logit (NL) model requires this choice set to be partitioned into 

non overlapping nests. The cross-nested logit (CNL) model relies on overlapping nests. They give 

the same weight to each nest.  The probability of choosing a particular destination j can be 

decomposed into the probability of choosing a particular subset of destinations m and the 

probability of choosing j within the subset m: 

(2.20)
 

 

The parameters μms capture the similarity between the random terms within nest m. The cross-

elasticity for destination j implied by the logit model is the same across all other destinations (i.e., it 

does not depend on the specificity of location j).  

The acquisition of information on possible places of residence is costly and time-consuming. It is 

therefore rational to economize attention, i.e. to collect and process information that is considered 

useful and ignore information that is not worth the effort of acquiring and processing6. It is known 

as the rational inattention approach to information acquisition. Information about place utilities is 

incomplete and imperfect (noisy). Individuals cannot collect and process all available information 

and cannot remove all the noise. However, they can choose which pieces of information to attend 

to. A rational decision-making process does not require perfect information, but an information 

acquisition strategy that reduces the uncertainty in the set of place utilities to an acceptable level at 

least cost. Anas (1983) and Sims (2003) use information theory to describe the level and 

distribution of uncertainty in the distribution of utility among the alternatives. A measure of 

uncertainty in the distribution of place utilities is the entropy of the distribution. The acquisition of 

relevant information on factors determining place utilities leads to a more skewed distribution of 

place utilities and reduces the number of destinations with a sufficiently high place utility. That 

facilitates decision making under uncertainty. Matejka and McKay (2015), building on Anas and 

Sims, distinguish between the utility assigned a priori to an alternative (e.g. place) and the actual 

utility. The utilities assigned are updated in light of the additional information that is acquired. 

The authors adopt Bayesian reasoning and add the cost of information acquisition. The aim of 

information acquisition is to generate subjective place utilities that are close to the actual place 

utilities. In the authors’ view, a high cost of information acquisition motivates an individual to 

base the ultimate assessment of the utility assigned to the alternatives more heavily on prior beliefs 

than on (unknown) actual utilities. The amount of uncertainty reduction, measured by the change 

in entropy of the place utility distribution, depends on the chosen information acquisition strategy. 

In the rational inattention approach to information acquisition, information theory is central to 

 

6 This type of rationality is known as procedural rationality. It differs from the rationality of the decision itself.  
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determine an optimal information acquisition strategy (for relatively recent reviews, see Jung et al., 

2019, and Maćkowiak et al., 2022). Bertoli et al. (2020) applied this rational inattention approach to 

arrive at a multinomial logit choice model of international migration, using the data presented by 

Abel (2018).  

The odds that individual k prefers region j over the reference region 𝑟′ usually depends on 

attributes of k, such as the current place of residence and the stage in the life course. Does knowing 

more about k contribute to a better prediction of the odds of preferring j over 𝑟′? Is it possible to 

quantify the contribution of additional knowledge? The odds that k prefers j is 𝜃𝑗𝑘 =
𝑝𝑗𝑘

𝑝𝑟′𝑘

=

𝑃𝑟{ 𝐷=𝑗𝑘 }

𝑃𝑟{ 𝐷=𝑟′
𝑘 }

, where 𝐷𝑘  is a random variable denoting the location preference of k. It is the odds in the 

absence of additional information about k. In other words, individual k is randomly selected from 

a population. Let’s introduce a single attribute of k: current region of residence. The probability 

that k resides in i and prefers j is the joint probability Pr( 𝑋𝑘 = 𝑖, 𝐷𝑘 = 𝑗). If the location preference 

is independent of the current location, then Pr( 𝑋𝑘 = 𝑖, 𝐷𝑘 = 𝑗) = Pr( 𝑋𝑘 = 𝑖) Pr( 𝐷𝑘 = 𝑗). The ratio 

of the joint probability over the product of marginal probabilities is 

𝜑𝑖𝑗𝑘 =
Pr( 𝑋𝑘 = 𝑖, 𝐷𝑘 = 𝑗)

Pr( 𝑋𝑘 = 𝑖) Pr( 𝐷𝑘 = 𝑗)
(2.21) 

If the ratio differs from one, then 𝑋𝑘  carries information on 𝐷𝑘  (and 𝐷𝑘  carries information on 

𝑋𝑘 ). The expected value of 𝜑 over all possible locations is the mutual information between 𝑋𝑘  and 

𝐷𝑘  (subscript k omitted for convenience): 

𝐸[ln(𝜑)] = ∑ Pr( 𝑋 = 𝑖, 𝐷 = 𝑗)
𝑖,𝑗

ln
Pr(𝑋 = 𝑖, 𝐷 = 𝑗)

Pr(𝑋 = 𝑖) Pr(𝐷 = 𝑗)
(2.22) 

which may be written as 

𝐸[𝑙𝑛(𝜑)] = ∑ 𝑝𝑋,𝐷(𝑖, 𝑗) 𝑙𝑛
𝑝𝑋,𝐷(𝑖, 𝑗)

𝑝𝑋(𝑖)𝑝𝐷(𝑗)𝑖,𝑗
 

Mutual information is an important concept in information theory (Cover and Thomas, 2006). It is 

the Kullback-Leibler information divergence with the product of marginal distributions 

(independence) as the auxiliary distribution (see further). If the mutual information of two random 

variables is high, i.e. if they share information, than the outcome of one can be predicted from 

knowledge of the other.  

The joint probability may be written as a product of the conditional probability and the marginal 

probability: 

Pr(𝑋 = 𝑖, 𝐷 = 𝑗) = 𝑃𝑟{𝐷 = 𝑗|𝑋 = 𝑖} 𝑃𝑟{𝑋 = 𝑖} =  𝑃𝑟{𝑋 = 𝑖|𝐷 = 𝑗} 𝑃𝑟{𝐷 = 𝑗} (2.23)  

Hence 

𝜑𝑖𝑗 =
Pr(𝑋 = 𝑖, 𝐷 = 𝑗)

𝑃𝑟{𝑋 = 𝑖} Pr(𝐷 = 𝑗)
=

𝑃𝑟{𝐷 = 𝑗|𝑋 = 𝑖} 

 Pr(𝐷 = 𝑗)
=

𝑃𝑟{𝑋 = 𝑖|𝐷 = 𝑗}

𝑃𝑟{𝑋 = 𝑖}
(2.24) 

Pr(𝐷 = 𝑗) is the probability that individual k prefers region j if no information is available on k. 

𝑃𝑟{𝐷 = 𝑗|𝑋 = 𝑖} is the probability that k selects j, provided k is a resident of region i. Note that, if a 

selection of j is followed by a migration to j, then 𝑃𝑟{𝐷 = 𝑗|𝑋 = 𝑖} is the probability that a resident 

of i  migrates to j. The conditional probability 𝑃𝑟{𝑋 = 𝑖|𝐷 = 𝑗} is the probability that an individual 

who prefers j resides in i. If a selection of j is followed by a migration to j, then 𝑃𝑟{𝑋 = 𝑖|𝐷 = 𝑗} is 

an recruitment probability. It is the probability that an individual who prefers region j, randomly 
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selected from all individuals in a population, “is recruited” from region i or originated from region 

i. Recruitment probabilities are inverse probabilities because the current region of residence is 

inferred from data on destination preferences (for a discussion of inverse probabilities in statistical 

inference, see Fienberg, 2006). Recruitment probabilities play an important role in the model 

proposed in this paper. They facilitate the accommodation of immigration restrictions. That is the 

subject of the next section. 

If the region of current residence has no effect on an individual’s preference, then 𝜑𝑖𝑗 = 1. The 

larger the deviation from one, the higher the effect of current residence on location preference and 

the more important is the knowledge of current residence for a prediction of the preferred region 

of residence. 𝜑𝑖𝑗 is the odds that data on current residence improves the prediction of the location 

preference. The odds may be used to assess the proposition or test the hypothesis that data on 

current residence are relevant for predicting an individual’s preference.  

Note that Bayes’ theorem follows directly from (2.23) and (2.24): 

𝜑𝑖𝑗  𝑃𝑟{𝑋 = 𝑖} =
𝑃𝑟{𝐷 = 𝑗, 𝑋 = 𝑖}

Pr(𝐷 = 𝑗)
=

𝑃𝑟{𝐷 = 𝑗|𝑋 = 𝑖} 𝑃𝑟{𝑋 = 𝑖}

 Pr(𝐷 = 𝑗)
= 𝑃𝑟{𝑋 = 𝑖|𝐷 = 𝑗} (2.25) 

with 𝑃𝑟{𝑋 = 𝑖|𝐷 = 𝑗} is the probability that an individual who prefers region j resides in region i.  

The odds that individual k prefers j rather than 𝑟′ is  𝜃𝑗 =
𝑝𝑗

𝑝𝑟′
=

𝑃𝑟{𝐷=𝑗}

𝑃𝑟{𝐷=𝑟′}
. It depends on the relative 

place utility attached to j. The odds that k prefers j, given the knowledge that k is resident of i is 
𝑃𝑟{𝐷=𝑗|𝑋=𝑖}

𝑃𝑟{𝐷=𝑟′|𝑋=𝑖}
. The odds ratio is 

𝑃𝑟{𝐷 = 𝑗|𝑋 = 𝑖}
𝑃𝑟{𝐷 = 𝑟′|𝑋 = 𝑖}

𝑃𝑟{𝐷 = 𝑗}
𝑃𝑟{𝐷 = 𝑟′}

=
𝑃𝑟{𝑋 = 𝑖|𝐷 = 𝑗}

𝑃𝑟{𝑋 = 𝑖|𝐷 = 𝑟′}
(2.26) 

and  

𝑃𝑟{𝐷 = 𝑗|𝑋 = 𝑖}

𝑃𝑟{𝐷 = 𝑟′|𝑋 = 𝑖}
=

𝑃𝑟{𝑋 = 𝑖|𝐷 = 𝑗}

𝑃𝑟{𝑋 = 𝑖|𝐷 = 𝑟′}
  

𝑃𝑟{𝐷 = 𝑗}

𝑃𝑟{𝐷 = 𝑟′}
(2.27) 

 

The term 
𝑃𝑟{𝐷=𝑗}

𝑃𝑟{𝐷=𝑟′}
 may also be interpreted as the odds in favour of the proposition that k prefers j 

(proposition H1) rather than the alternative proposition that k prefers 𝑟′ (proposition H2), in the 

absence of data on the current place of residence. The odds ratio is the relative place utility a 

resident of i attaches to region j and the relative place utility attached to j by a randomly selected 

member of the population. The overall population serves as a reference category. In Bayesian 

statistics, the odds 
𝑃𝑟{𝐷=𝑗}

𝑃𝑟{𝐷=𝑟′}
 is called the prior odds, while  

𝑃𝑟{𝐷=𝑗|𝑋=𝑖}

𝑃𝑟{𝐷=𝑟′|𝑋=𝑖}
 is the posterior odds (after 

information on the current place of residence). The factor transforming the prior odds into the 

posterior odds is the Bayes factor (Kass and Raftery, 1995, p. 776). It is 
𝑃𝑟{𝑋=𝑖|𝐷=𝑗}

𝑃𝑟{𝑋=𝑖|𝐷=𝑟′}
, the ratio of 

probabilities that a particular proposition predicts the data. The Bayes factor, a term coined by 

Good, is the ratio of the posterior odds to the prior odds. In Bayesian analysis, the Bayes factor is 

used to assess whether data or evidence supports a proposition, belief, theory or model. The 

proposition is that individual k prefers region j. The Bayes factor summarizes the evidence 

provided by the data in favour of the proposition. The methodology for quantifying the evidence 

in favour of a proposition was developed by Jeffreys (1939). The logarithm of the Bayes factor is 

commonly referred to as the weight of evidence in favour of the proposition that k prefers j. The 

concept was introduced by Good (1950; 1985, p. 253).  
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Note that 
𝑃𝑟{𝐷=𝑗|𝑋=𝑖}

𝑃𝑟{𝐷=𝑗}
= 𝜑𝑖𝑗  𝑃𝑟{𝑋 = 𝑖} and 

𝑃𝑟{𝐷=𝑟′|𝑋=𝑖}

𝑃𝑟{𝐷=𝑟′}
= 𝜑𝑖𝑟′  𝑃𝑟{𝑋 = 𝑖}. Hence the Bayes factor is  

𝑃𝑟{𝑋 = 𝑖|𝐷 = 𝑗}

𝑃𝑟{𝑋 = 𝑖|𝐷 = 𝑟′}
=

𝜑𝑖𝑗

𝜑𝑖𝑟′
(2.28) 

with 𝜑𝑖𝑗 given by (2.21). The ratio 
𝜑𝑖𝑗

𝜑𝑖𝑟′
 is the probability that an individual who prefers j has the 

same region of current residence i as individual who prefers reference region 𝑟′.  

The reference location may be a given location or a hypothetical location, e.g. a location with the 

average place utility of all locations. Although individuals use different reference locations, it is 

convenient to use the same reference location for all individuals or for a group of individuals with 

similar attributes. The relative value of a place utility is the ratio of two place utilities and may be 

measured by the ratio of two probabilities, the probability of preferring a given location and the 

probability of preferring the reference location. In other words, the ratio of two place utilities is the 

odds that an individual prefers a given location rather than the reference location.  

2.2.3 Accessibility of destinations and barriers to immigration 

The utilities individuals assign to places are relatively stable as long as the characteristics of places 

that are considered relevant do not change much. It is the consequence of individuals aiming at 

some consistency in what they want and the reinforcement of individual preferences by other, 

including the media. Stable preferences lead to consistent choices and stable behavioural patterns. 

That stability is used in this paper. It is assumed that the place utility an individual assigns to a 

location is equal to the place utility individuals assigned in previous years. If the preference for a 

given location changes, it affects the entire distribution of location preferences. For instance, if a 

location becomes less attractive or less accessible, two effects emerge. First, more people may 

decide to stay in their current location implying a decline in mobility. Second, some people may 

choose another destination. The first effect may be called a level effect, while the second is a 

substitution effect. The effects are analogous to the income and substitution effects distinguished 

in consumer choice theory to denote the effects triggered by a change in the price of a product. The 

model presented in this paper quantifies the level and substitution effects of changes in 

attractiveness of locations. Barriers to immigration have similar effects than changes in 

attractiveness. The presence of barriers makes a destination de facto less attractive to most people. 

Barriers have also additional effects, e.g. return migration. Immigrants are less likely to give up 

their residence when the option to return no longer exists (Czaika and de Haas, 2013). The 

presence of substitution effects in the case of barriers to immigration was shown by Wissen and 

Jennissen (2008), Simon (2018, 2019) and others. Simon (2019, pp. 27ff) distinguishes two 

substitution effects: a location (destination) effect and a channel effect. The latter is a shift from 

legal migration to clandestine or unauthorized migration (see also Clemens and Gough, 2018; 

Barslund et al., 2019). De Haas et al. (2019) show that they limit the effectiveness of migration 

policies. 

In this subsection, two extensions are introduced. First, the presence of obstacles imply that places 

differ in accessibility. An origin-destination specific measure of accessibility is added. The 

introduction of an accessibility term has a very interesting side effect: the random utility discrete 

choice model closely resembles the gravity model. Second, barriers to immigration are introduced.  
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a. Accessibility 

The gravity model and its extensions include a term to measure the effect of accessibility, 

intervening opportunities or spatial friction, e.g. distance. Ortega and Peri (2013) and Beine et al. 

(2016) add an accessibility term to discrete choice model in order to capture the effects of obstacles 

and individual differences in capabilities to remove the obstacles and make it to the preferred 

location. The utility individual k attaches to region j is  

𝑈𝑘 𝑗 = 𝑣𝑘 𝑗 − 𝑐𝑗𝑘 + 𝜀𝑘 𝑗 (2.29) 

with 𝑐𝑗𝑘  the disutility or reduction in utility associated with a less than perfect accessibility of j. 

The term captures effects of obstacles, including distance, costs, differences in culture and 

language between places, and other forms of spatial friction. The authors show that the 

introduction of an accessibility term produces a random utility discrete choice model that closely 

resembles the gravity model. Assume that all potential migrants in the system assign the same 

place utility to region j: 𝑣𝑘 𝑗 = 𝑣𝑗 for all k. Assume further that accessibility of j varies by region of 

origin, and does not vary between individuals in that region of origin. In other words, individual 

differences in preferences for region j are fully determined by differences in access to j. Assume 

finally that the random term follows an independent and identically distributed type I extreme 

value distribution. The choice model becomes (omit k) 

𝑝𝑖𝑗 =
𝑒𝑥𝑝[𝑣𝑗 − 𝑐𝑖𝑗] 

∑ 𝑒𝑥𝑝[𝑣ℎ − 𝑐𝑖ℎ]ℎ

= 
𝑒𝑥𝑝[𝑣𝑗]

∑ 𝑒𝑥𝑝[−𝑐𝑖ℎ] 𝑒𝑥𝑝[𝑣ℎ]ℎ

𝑒𝑥𝑝[−𝑐𝑖𝑗] = 𝑎𝑖  𝑏𝑗 𝑒𝑥𝑝[−𝑐𝑖𝑗] (2.30) 

with 𝑎𝑖 = 1/∑ 𝑒𝑥𝑝[−𝑐𝑖ℎ] 𝑒𝑥𝑝[𝑣ℎ]ℎ , 𝑏𝑗 = 𝑒𝑥𝑝[𝑣𝑗] and 𝑒𝑥𝑝[−𝑐𝑖𝑗] ≤ 1. The last term of equation (2.30) 

resembles the gravity model. The exponential of the utility reduction due to an imperfect 

accessibility of j may be written as 𝑐𝑖𝑗
∗ = 𝑒𝑥𝑝[−𝑐𝑖𝑗]. It represents the effects of obstacles to migration 

from i to j. The model that results resembles the biproportional adjustment (RAS) model, widely 

used in migration analysis (see e.g. Willekens, 2016): 

𝑝𝑖𝑗 = 𝑎𝑖  𝑏𝑗 𝑐𝑖𝑗
∗ (2.31) 

Notice that  

𝜕𝑎𝑖

𝜕𝑐𝑖ℎ
∗ = 𝑒𝑥𝑝[𝑣ℎ] = 𝑏𝑗 (2.32) 

which implies that a reduction in the accessibility of destination h for individuals in i, leads to an 

increase in the preference for j. It is the substitution effect associated with a less than perfect 

accessibility of regions. If two countries i and j form a union with freedom of movement or 

reduced mobility constraints, then the mobility between these countries will increase. The odds 

that a resident of i migrates to j rather than h is  

𝑝𝑖𝑗

𝑝𝑖ℎ
=

𝑏𝑗 𝑐𝑖𝑗
∗

𝑏ℎ 𝑐𝑖ℎ
∗  

It depends on a resident of i’s perception of the relative attractiveness of the two regions and their 

relative accessibility. The odds of staying in i with a change in accessibility of j is  
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𝑝𝑖𝑖

𝑝𝑖𝑗
=

𝑏𝑖  

𝑏𝑗 𝑐𝑖𝑗
∗ (2.33) 

If the accessibility of j declines, the odds of staying in i increases, irrespective of changes in 

attractiveness of alternative destination. It is a consequence of the IIA property of the logit choice 

model, which is associated with the distributional assumption of the random component of the 

utility function. 

b. Barriers to immigration  

Barriers to immigration introduce competition between potential migrants. In the presence of 

barriers, individual aspirations (preferences) and capabilities to remove obstacles are not enough 

to make it to a preferred destination. The preferences and capabilities of others are important too. 

Relative place utilities and relative destination preferences, expressed as odds, are guiding 

principles in the absence of immigration barriers. In the presence of barriers, odds ratios become 

important. Odds ratios relate relative preferences to background factors, such as current region of 

residence and personal factors. Background factors affect the strength of relative preferences, and 

consequently the substitution patterns. A consequence of quota is that relative location preferences 

(odds) become irrelevant for predictive purposes, but the ratio of relative preferences of any two 

individuals become important.  

Empirical studies of time series of migration flows indicate that individual differences in strength 

of relative preferences are quite stable in time. That finding has been known for quite some time in 

internal migration (see e.g. Snickers and Weibull, 1977; Willekens, 1982). Abel and Sander (2014) 

discovered similar stable dependence structures in international migration. Barthel and Neumayer 

(2015) identified stable dependence structures in asylum flows. That finding has major 

consequences for the estimation and prediction of migration flows because the time-invariance or 

stability is useful knowledge that can improve estimations and prediction. The useful knowledge 

is usually incorporated in the models of migration in the form of auxiliary migration flow data, 

usually a historical migration flow that carries information on individual differences in strength of 

relative preferences. Interestingly, the approach is consistent with iterative proportional fitting 

(IPF) and the biproportional adjustment method (RAS), which are most popular methods to 

predict migration flows from incomplete data. These methods have the interesting property that 

they preserve differences in strength of relative preferences, measured by the odds ratio. The 

property is known as the invariance of association principle. The principle is used to impose 

dependence structures onto migration flows when the available data provide no information on 

the structure (Rogers et al., 2003; Raymer, 2007; Raymer et al., 2019).  

2.3  Estimation of transition probabilities 

Logistic regression is the dominant method for estimating transition probabilities when data are 

complete. The method is inadequate when some necessary data are missing. A number of 

approaches have been proposed to estimate transition probabilities from incomplete data. One 

approach is to specify a model of the complete data and to estimate its parameters from the data 

that are available. The model describes the missing-data-generating mechanism. Little and Rubin 

(2020[1987]) introduced the Expectation-Maximization (EM) algorithm, which maximizes the 

likelihood of the data given the model, i.e. it is a maximum-likelihood method. Little and Rubin 

acknowledge that their approach depends on the specification of the model and they warn for 

model misspecification. The technique has been applied for estimating migration flows (Willekens, 
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1999; Abel, 2013). A method that does not require specification of the likelihood function is 

Approximate Bayesian Computation (ABC) (Beaumont, 2019). The likelihood-free estimation 

method defines a set of possible parameter values (parameter space) and simulates realizations of 

the model’s outcome under different parameter values. The desired parameter values produce 

outcomes that are “close" to observed outcomes. A third approach relies on information theory. 

That approach is used in this paper. No model of the missing data is specified and, by implication, 

the method is likelihood-free. Missing data are estimated from available data using constrained 

optimization techniques and the objective function in the optimization problem is derived from 

information theory. The available data on migration act as constraints and the estimated or 

predicted migration flows must satisfy these constraints. In other words, the missing data must be 

consistent with what is known about the data. The approach may be viewed as an imputation of 

missing data from available data. Imputations are not unique since many alternative imputations 

satisfy the constraints imposed by the available knowledge. Therefore, the most probable values of 

a migration flow that are consistent with the known data (imposed as constraints) need to be 

determined. The most probable values leave a maximum of uncertainty allowed by the available 

knowledge. They are obtained by maximizing the entropy of the migration flow (macrostate). The 

principle of entropy maximization (MAXENT) is the modern version of the principle of insufficient 

reason advanced by Jacob Bernoulli (1654-1705) and the indifference principle advanced by 

Keynes’ (1921, pp. 52-53) (see also Robert, 2011). It states that if we do not have sufficient reason to 

regard one outcome more probable than another, we should treat them as equally probable. The 

maximum entropy distribution leaves a maximum uncertainty and is therefore least informative, 

while accounting for the available knowledge (Jaynes, 2003)7. Jaynes (1957a, 1957b), who 

introduced entropy maximization in statistics, showed that entropy maximization offers a unified 

framework for statistical inference when data are incomplete and knowledge is limited. Wilson 

(1970) introduced entropy maximization in the study of migration, but used the combinatorial 

approach to entropy maximization. Jaynes adopted the probabilistic approach. The latter approach 

is followed in this paper. 

The estimation of true migration flows may benefit from auxiliary information. Auxiliary data 

contribute information that is not supplied by data on the true flows. Estimation methods give 

priority to information on the true flows and use the auxiliary information to fill in the missing 

pieces. The most probable estimates of the true flows are those that extract as much information 

from the available knowledge as possible and acknowledges the uncertainty that remains. An 

indicator of success is the information content of the estimates. It should be as close as possible to 

the information content of the available data. In information theory, the difference in information 

content is measured by the Kullback-Leibler (1951) (KL) information divergence (also known as 

cross-entropy, Rubeinstein and Kroese, 2016). The KL information divergence and the ABC 

algorithm have much in common. Spiliopoulos  (2020) discusses the ABC algorithm through the 

lens of information theory. 

Consider a system of regions 𝑅 = {𝑥1, 𝑥2, … , 𝑥𝑟}, which is denoted by the indices 𝑅 = {1, 2, … , 𝑟} for 

convenience. Let 𝑋(𝑡)𝑘  and 𝑋(𝑡 + 1)𝑘  denote the region of residence of individual k at time t and  

t+1, respectively. The probability that k resides in i at t is the state probability 𝑝𝑘 𝑖(𝑡) (see Section 

2.2). The probability that k resides in region i at t and region j at t+1 is the joint probability 

𝑃𝑟{ 𝑋𝑘 (𝑡) = 𝑖, 𝑋𝑘 (𝑡 + 1) = 𝑗} =  𝑝𝑘 𝑖𝑗 𝑝𝑘 𝑖(𝑡). In what follows, k refers to an individual selected at 

random from the entire population or from the population of a region, and the subscript k is 

 

7 Note that Bayes introduced a uniform prior distribution and Jeffreys designed method for producing uninformative 

priors to reflect ignorance (Fienberg, 2006). That approach also leaves a maximum of uncertainty.   
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omitted. Recall that 𝑛𝑖(𝑡) denotes the count of individuals in region i and 𝑛𝑖𝑗(𝑡, 𝑡 + 1) the number 

of individuals in region i at t and in region j at t+1. It is common to display count data in a 

contingency table. Viewing a migration flow matrix as a contingency table of counts has the 

advantage that methods for the analysis of contingency tables can be used for the estimation of 

migration flows (Willekens, 1980, 1982). For recent applications to international migration, see 

Abel (2013, 2017) and Raymer et al. (2019). In what follows, counts may be replaced by proportions 

using the equality 𝑛𝑖𝑗 = �̂�𝑖𝑗 𝑛 with �̂�𝑖𝑗 the proportion or relative frequency. As n tends to infinity, 

the proportion tends to a probability (asymptotically).  

Data on the true distribution of migration flows are incorporated as constraints, while the auxiliary 

data are used as a prior distribution in Bayesian parlance. The two types of information are 

discussed in some detail. For illustrative purpose, a most simple case is considered first. Suppose 

that nothing is known about the true joint distribution of places of residence at t and t+1 except the 

size of the population. In the absence of auxiliary information, the probability that a randomly 

selected member of the population is in region 𝑖 at t and in region 𝑗 at t+1 is �̂�𝑖𝑗 =
1

𝑟2 when the 

population size n is sufficiently large. The estimated count of persons in i at t and j at t+1 is �̂�𝑖𝑗 =

𝑛 �̂�𝑖𝑗 =
𝑛

𝑟2. This simple estimation method maximizes the entropy of the cross-classification of 

individuals by region of residence at t and residence of residence at t+1 (Annex A).  Although 

auxiliary data are absent, they may be imagined as being present but not informative. The least 

informative distribution is the uniform distribution. Let 𝑝𝑖𝑗
0  denote the auxiliary or reference 

distribution and assume that it is the uniform distribution: 𝑝𝑖𝑗
0 =

1

𝑟2. The estimates obtained in the 

absence of an auxiliary distribution are identical to those obtained with a uniform reference 

distribution.  

Let’s consider additional information. Suppose the population distribution at t and the distribution 

at t+1 are known, but the joint distribution is not known. In other words, the marginal 

distributions of 𝑋(𝑡)+  and 𝑋(𝑡 + 1)+  are known, but their dependence structure is unknown. 

Information on the true joint distribution is incorporated in the estimation method as constraints: 

the joint distribution must satisfy given marginal distributions. The missing information, i.e. the 

dependence structure, is extracted (‘borrowed’) from the auxiliary distribution. As a consequence, 

the true distribution and the auxiliary distribution exhibit the same interaction effects. The 

principle of borrowing effects from auxiliary distributions is fundamental for estimating joint 

distributions from incomplete data. Good (1963) uses that principle to estimate entries of a 

contingency table (joint distribution) from marginal totals (marginal distributions) and an auxiliary 

distribution. He implements the approach by minimizing the Kullback-Leibler divergence (relative 

entropy) between the true and auxiliary distributions (Good, 1963, p. 912) subject to constraints 

representing the knowledge about the true distribution. He calls the principle the principle of 

minimal discriminability and sees it as a generalization of the Jaynes’ principle of maximum entropy. 

Good also proves the important duality between minimization of the Kullback-Leibler divergence 

and Fischer’s maximum likelihood method. His duality theorem states that the maximum 

likelihood estimates of the parameters of the distribution of a discrete random variable 

(probabilities) are equal to the maximum entropy estimates (Good,1963, p. 927). Earlier he had 

shown the connection between information theory and Fisher’s notion of sufficient statistic (Good, 

1956, p. 201). As a consequence of the duality theorem, entropy maximization or minimization of 

relative entropy (KL divergence) may be used to obtain maximum likelihood estimates. Lusem 

and Teboulle (1992) give a mathematical description of the duality. Good’s principle of minimum 
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information is the same as the minimum information divergence proposed by Ireland and 

Kullback (1968) and Kullback (1968)8.  

 

The entropy maximization problem is to predict the true distribution 𝑝𝑖𝑗 from (a) the marginal 

distributions 𝑝𝑖+ and 𝑝+𝑗, and (b) the auxiliary distribution 𝑞𝑖𝑗. An alternative, but equivalent 

formulation is to predict the true migration flows 𝑛𝑖𝑗  from (a) the known number of individuals in 

region i at t who are still present in the multiregional system at t+1, denoted by 𝑂𝑖, and the known 

number in j at t+1 who were also present in the system at t, denoted by 𝐷𝑗 . and (b) the destination 

preferences, which act as auxiliary data. Let 𝑛𝑖𝑗
0  denote the number of individuals in region i who 

prefer to be in region j. The probability that an individual in i prefers j, denoted by 𝑝𝑖𝑗
0 , is estimated 

by 𝑛𝑖𝑗
0 /∑ 𝑛𝑖𝑗

0
𝑗 . Notice that individuals in i may desire to stay in i. In case individuals who desire to 

stay are excluded: �̂�𝑖𝑗
0 = 𝑛𝑖𝑗

0 /∑ 𝑛𝑖𝑗
0

𝑗≠𝑖 . Note that, because only individuals present at t and t+1 are 

included, ∑ 𝑂𝑖 = ∑ 𝐷𝑗𝑗𝑖 . The number of individuals who prefer region j may exceed the capacity 

of j or the immigration quota imposed by j. In that case, several individuals cannot move to their 

preferred destination. They may decide to stay in their current region of residence, move to 

another suitable destination, or opt for a different channel of migration. Let 𝑛𝑖𝑗
∗  denote the 

predicted migration from i to j. 

The optimization problem is to find the values of 𝑛𝑖𝑗
∗  that reflect the preferences as good as 

possible, subject to information available on the true flow 𝑛𝑖𝑗 : 

minimize𝐷𝐾𝐿(𝑛𝑖𝑗
∗ ‖𝑛𝑖𝑗

0 ) = ∑ 𝑛𝑖𝑗
∗  𝑙𝑛

𝑛𝑖𝑗
∗

𝑛𝑖𝑗
0

𝑖𝑗
(2.34) 

subject to  

∑ 𝑛𝑖𝑗
∗ = ∑ 𝑛𝑖𝑗 =

𝑗
𝑂𝑖

𝑗
 

∑ 𝑛𝑖𝑗
∗ = ∑ 𝑛𝑖𝑗 =

𝑖
𝐷𝑗

𝑖
 

The objective function is the discrete analogue of a functional, an integral of functions. Discrete 

calculus of variations is used to find the solution to the constrained optimization problem.  

To obtain the most probable values of 𝑛𝑖𝑗
∗ , the Lagrangian function is constructed and minimized. 

The Lagrangian is 

𝐿 = ∑ 𝑛𝑖𝑗
∗ ln

𝑛𝑖𝑗
∗

𝑛𝑖𝑗
0

𝑖,𝑗
+ ∑ 𝜆𝑖 (∑ 𝑛𝑖𝑗

∗ − 𝑂𝑖
𝑗

)
𝑖

+ ∑ 𝜇𝑗 (∑ 𝑛𝑖𝑗
∗ − 𝐷𝑗

𝑖
)

𝑗
(2.35) 

with 𝜆𝑖 and 𝜇𝑗  Lagrange multipliers associated with the constraints. The multiplier 𝜆𝑖 measures the 

impact of a small change in 𝑂𝑖 on L: 
𝜕𝐿

𝜕𝑂𝑖
= 𝜆𝑖  . It quantifies the impact on 𝐷𝐾𝐿(𝑛𝑖𝑗

∗ ‖𝑛𝑖𝑗
0 ) of a change 

in the number of residents of i who either stay in i or migrate to another region. A decrease in the 

KL information divergence means that the true migration pattern better reflects the preferences of 

 

8 Akaike (1973) found that the KL information divergence is the expected value of the log likelihood ratio in favour of the 

true distribution against the other candidate distributions (for a discussion of the relation between KL divergence and 

the log-likelihood ratio, see Etz, 2019 and Eshima, 2020). The KL divergence is the core of the Akaike information 

criterion (AIC). It is also a core component of the generalizations of the Deming and Stephan’s IPF method by Ireland 

and Kullback (1968) and Darroch and Ratcliffe (1972). Darroch and Ratcliffe start from Deming-Stephan 1940, who 

minimize chi-square.  
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individuals in the system of regions. The Lagrange multiplier  
𝜕𝐿

𝜕𝐷𝑗
= 𝜇𝑗  measures the effect on the 

KL information divergence of a change in the number of people admitted to region j. If a decrease 

in 𝐷𝑗  causes an increase in 𝐷𝐾𝐿(𝑛𝑖𝑗
∗ ‖𝑛𝑖𝑗

0 ), then a reduction in the admission of immigrants (or 

immigration quota) produces a migration flow that reflects the preferences less than before the 

reduction of the quota. The interpretation of Lagrange multipliers has received very limited 

attention in migration modelling. Nagurney et al. (2020, 2021) use network equilibrium models 

and the theory of variational inequalities (discrete calculus of variations) and Lagrangeans to gain 

insights as to the impacts of regulations, including immigration quota, on place utilities for 

different classes of migrants, and on international refugee migration flows. Notice that 

immigration quota and other policy measures enforced by governments are captured via the 

constraints on migration flows. The constraints therefore may reflect different types of knowledge 

about the true migration flows.   

The necessary conditions for the minimum are 

𝜕𝐿

𝜕𝑛𝑖𝑗
∗ = 0 = ln

𝑛𝑖𝑗
∗

𝑛𝑖𝑗
0 + 1 + 𝜆𝑖 + 𝜇𝑗 (2.36) 

𝜕𝐿

𝜕𝜆𝑖
= 0 = ∑ 𝑛𝑖𝑗

∗ − 𝑂𝑖

𝑟

𝑗=1
 

𝜕𝐿

𝜕𝜇𝑗
= 0 = ∑ 𝑛𝑖𝑗

∗ − 𝐷𝑗

𝑟

𝑖=1
 

The first equation yields the desired distribution in terms of the Lagrange multipliers: 

𝑛𝑖𝑗
∗

𝑛𝑖𝑗
0 = 𝑒𝑥𝑝[−(1 + 𝜆𝑖 + 𝜇𝑗)] (2.37) 

𝑛𝑖𝑗
∗ = 𝑒𝑥𝑝[−(1 + 𝜆𝑖 + 𝜇𝑗)] 𝑛𝑖𝑗

0  

The most likely pattern of relocation cannot be determined analytically. It must be obtained by 

iteration. The iterative algorithm is a variant of iterative proportional fitting (IPF). Let 𝑎𝑖 =

exp(−1 − 𝜆𝑖) and 𝑏𝑗 = exp(−𝜇𝑗) . We may write 

𝑛𝑖𝑗
∗ = 𝑎𝑖  𝑏𝑗 𝑛𝑖𝑗

0 (2.38) 

with 𝑎𝑖 and 𝑏𝑗 to be determined from the marginal totals using an iterative procedure: 

𝑎𝑖 ∑ 𝑛𝑖𝑗
0

𝑟

𝑗=1
𝑏𝑗 = 𝑂𝑖 

𝑎𝑖 =
𝑂𝑖

∑ 𝑏𝑗 𝑛𝑖𝑗
0𝑟

𝑗=1
(2.39) 

and similarly  

𝑏𝑗 =
𝐷𝑗

∑ 𝑎𝑖  𝑛𝑖𝑗
0𝑟

𝑖=1
(2.40) 

The iteration starts with any value of 𝑎𝑖 or 𝑏𝑗.  

Entropy maximization, and more particularly the combinatorial approach, is the dominant method 

for the estimation of migration flows by origin and destination. Inspired by Wilson (1970), Chilton 

and Poet (1973), Willekens (1977, 1982, 1999) and many others adopted the approach. The method 
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gives the same result as the probabilistic approach based on information theory and presented 

above. The information theoretic method has also been popular (Snickars and Weibull, 1977; Plane, 

1982; Roy and Flood, 1992).  

In statistics, the method of estimating the entries of a contingency table from given marginal totals 

and an auxiliary contingency table is known as iterative proportional fitting (IPF). In economics 

and geography the method is known as biproportional adjustment and RAS method. IPF is 

associated with Deming and Stephan (1940) although the authors did not maximize the entropy 

function but a chi-square-type distance norm. Deming and Stephan’s justification for using least-

square optimization turned out to be wrong, as noted by Stephan (1942) (see also Fienberg, 1970). 

Jaynes (1957a, p. 623) notices that the least squares method has some properties of Shannon’s 

information method, but with limitations. Jaynes (2003, p. 346) gave a simple example to illustrate 

the problem. Entropy maximization produces nonnegative estimates because of the log-

transformation. Idel (2016) gives an extensive review of over 70 years of iterative proportional 

fitting from a mathematical perspective but excludes the Deming-Stephan algorithm. The author 

also shows that the biproportional adjustment method is the dual problem of the Kullback-Leibler 

information minimization (Idel, 2016, p. 16). Fienberg (1970), Ireland and Kullback (1968) and 

Zaloznik (2011) offer good discussions of the algorithm.  

2.4  A note on dependency structures and log-linear models 

2.4.1 Dependence structures 

The constrained minimization of the information divergence between the unknown true migration 

flows and the individual preferences produces predictions with interesting properties.  First, the 

predicted values 𝑛𝑖𝑗
∗  agree with the available information on the true flows (in this case 𝑂𝑖 and 𝐷𝑗  

for all i and j). The information on the true flows is imposed onto the estimates through the 

constraints. In other words, the bivariate distribution agrees with the marginal distributions. 

Second, the information not supplied by the constraints is obtained from the auxiliary data, in this 

case individual preferences, aggregated in counts of individuals by origin and preferred 

destination (𝑛𝑖𝑗
0 ). It means that the predicted migration flows reflect the individual preferences, but 

only partly due to the constraints imposed onto the flows.  

It is useful to distinguish local and global measures of dependence. The odds ratio or cross-

product ratio is a measure of local dependence. It is the ratio of the relative location preferences of 

a resident of one region and the relative location preference of a resident of another region. 

Another local measure of dependence is the ratio of the migration between two regions and the 

migration expected under conditions of independence. It is 
𝑛𝑖𝑗

𝑛𝑖+𝑛+𝑗 /𝑛++ 
. Mutual information is a 

measure of global dependence. It is given in equation (2.22). The global indicator summarizes the 

effect of local dependencies. If the true migration flow matrix and the auxiliary migration flow 

matrix, e.g. historical migration flow, exhibit the same dependence structure, then the mutual 

information is the same in the two matrices and the odds ratios are the same. If no historical 

migration flow is available, odds ratios may be elicited using other methods, such as expert 

opinions, and used to impose an association structure onto the estimates (Coffey et al., 2020). 

Consider odds ratios in more detail and suppose that the auxiliary data consists of a matrix of 

location preferences which vary by current region of residence. The odds ratio is given in equation 

(2.26). If the data consist of population counts, then the odds ratio may be written as: 
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𝛼𝑖𝑗 =

𝑛𝑖𝑗

𝑛𝑖𝐽

𝑛𝐼𝑗

𝑛𝐼𝐽

 =
𝑛𝑖𝑗  𝑛𝐼𝐽

𝑛𝑖𝐽  𝑛𝐼𝑗
(2.41) 

where I and J denote the regions of current residence and preferred residence that act as reference 

categories in the definition of the odds. Two reference categories are used to accommodate two 

constraints, the first that the number of people by current region of residence is n, the second that 

the number of people by preferred region of residence is n too. A same region may be used as 

reference category in current residence and preferred residence. In (2.26), we used a single 

reference category, i.e. 𝐼 = 𝐽 = 𝑟′. The odds ratio is the odds that a resident of region i prefers 

region j rather than the reference region J, divided by the odds that a resident of the reference 

region I prefers j rather than J. In other words, it is the relative location preference of a resident of i 

divided by the relative location preference of a resident of reference region I. If the current region 

of residence has no influence on the location preference, the odds ratio is one. A large odds ratio 

centered around the cell (i,j) implies that residents of i have a much higher preference for j than 

one may expect on the basis of the outflows from i and inflows in j. It measures the extent at which 

a proposition is supported by the data. The logarithm of the odds ratio 𝛼𝑖𝑗 can be written as the 

difference between two linear contrasts: 

𝑙𝑛 𝛼𝑖𝑗 = 𝑙𝑛
𝑛𝑖𝑗

𝑛𝑖𝐽
− 𝑙𝑛

𝑛𝐼𝑗

𝑛𝐼𝐽
= 𝑙𝑛

𝑝𝑖𝑗

𝑝𝑖𝐽
− 𝑙𝑛

𝑝𝐼𝑗

𝑝𝐼𝐽
= 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) − 𝑙𝑜𝑔𝑖𝑡(𝑝𝐼𝑗) 

with  𝑝𝑖𝑗 =
𝑛𝑖𝑗

𝑛++
.  Note that the  𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) is defined for current region of residence i  and 𝑙𝑜𝑔𝑖𝑡(𝑝𝐼𝑗) 

is defined for the reference region I of current residence.  

Note that the Bayes factor is an odds ratio too (Kass and Raftery, 1995). The logarithm of the Bayes 

factor is the weight of evidence (see Section 2.2.b).  

Some authors distinguish between nominal odds ratios and local odds ratios (see e.g. Kateri, 2014, 

pp. 40ff). Nominal odds ratios are defined with respect to a fixed reference cell (I,J), as in equation 

(2.41). Local odds ratios are computed for a 2 by 2 subtable formed by the entries i, i+1, j and j+1: 

𝛼𝑖𝑗
𝑙𝑜𝑐 =

𝑛𝑖𝑗

𝑛𝑖,𝑗+1

𝑛𝑖+1,𝑗

𝑛𝑖+1,𝑗+1

 =
𝑛𝑖𝑗  𝑛𝑖+1,𝑗+1

𝑛𝑖,𝑗+1 𝑛𝑖+1,𝑗
(2.42) 

The odds ratio is an appealing measure of association in cross-classified data because it has useful 

properties. The odds ratio is invariant under the interchange of rows and columns and is invariant 

under row and column multiplication (Mosteller, 1968, p. 4). The invariance means that the odds 

ratio does not change if we multiply counts by row factors and column factors. Hence a 

contingency table of elements 

𝑛𝑖𝑗
∗ = 𝑎𝑖  𝑏𝑗 𝑛𝑖𝑗

0 (2.43) 

exhibit the same odds ratios as contingency table 𝑛𝑖𝑗
0 , for any value of 𝑎𝑖 and 𝑏𝑗. That property is 

known as multiplicative invariance of association (Mosteller, 1968). No other measure of association 

has that property (Bishop et al., 1975, p. 392). The invariance property implies that the odds ratio is 

independent of marginal totals. It is a margin-free measure of association (Bishop et al., 1975, p. 

375).  
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The IPF preserves the association between cross-classified random variables, something which 

Deming and Stephan (1940) did not realize (Mosteller, 1968, p. 10). The property of multiplicative 

invariance of association is particularly interesting for the estimation and prediction of migration 

flows (Willekens, 1983, p. 192) and has been used frequently in applied research. Willekens (1994; 

2016, p. 235) reviews migration estimation methods that incorporate the property, although often 

not explicit or under a different name. Rogers et al. (2003, 2010) used it to impose spatial structures 

onto estimates of migration flows. Today, the IPF is the main method for estimating international 

migration flows by country of origin and country of destination (Abel, 2017; Azose and Raftery, 

2019; Raymer et al., 2019).  

The preservation of local dependencies implies preservation of global dependence. Equation (2.43) 

may be written in matrix terms: 

𝒏∗ = 𝒂 𝒏0 𝒃 (2.44) 

with a and b diagonal matrices of elements 𝑎𝑖 and 𝑏𝑗, respectively.  

The matrices 𝒏∗and 𝒏0 in equation (2.44) have equal mutual information, which differs from the 

mutual information in the true flow matrix 𝒏. The two matrices have equal mutual information 

because they share local dependencies (odds ratios). The invariance property is a logical step to 

more general dependence structures in multivariate distributions and copula theory. Copula 

theory deals with dependence structures in multivariate distributions. In a 3-page note, Sklar 

(1959) showed that any multivariate joint distribution can be written in terms of univariate 

marginal functions and a distribution that describes the dependence structure between random 

variables, known as copula. Sklar’s theorem is the foundation of copula theory and copula models 

(see e.g. Nelson, 2006; Czado, Geenens, 2020, Genest, 2021). Copulas are a powerful and flexible 

tool for modelling associations in data. It enables the separation of dependence structures from the 

marginal distributions. They provide a way to construct joint distributions with arbitrary margins 

and to impose a wide variety of dependence structures. They are fast gaining in popularity in 

engineering, financial applications, and recently also in the construction of synthetic populations 

(Jeong 2016 p. 6; Ye and Wang, 2018). The main challenge is to write a joint distribution of two (or 

more) random variables as the product of univariate margins and a distribution that describes the 

dependence structure assuming uniform margins. The merging of two distributions to 

approximate a true joint distribution is known as coupling. They are also applied to incorporate 

expert knowledge in joint distributions (O’Hagan, 2019). The coupling that maximizes the mutual 

information in two distributions minimizes the entropy of the joint distribution. It is therefore 

called a minimum-entropy coupling (Cicalese et al., 2019). It is the joint distribution that is farthest 

from independence between the random variables. In forecasting, empirical dependence structures 

may be adopted from historical records, known as nonparametric copula. Most copula models are 

developed for continuous distributions. Copula models for discrete probability distributions are in 

their infancy. A detailed discussion of copula models is beyond the scope of this paper.  

2.4.2 Log-linear models 

In the social sciences, a common approach to study dependencies in cross-classified count data 

(contingency tables) is to model the dependencies in the data (Bishop et al., 1975; Agresti, 2013, 

and Dobra and Mohammadi, 2018 for a Bayesian approach to log-linear models). The model 

separates the effects of marginal totals (main effects) from the association between the cross-

classified variables (interaction effects). That model is the log-linear model. Applied to migration, 

the log-linear model decomposes a migration flow 𝑛𝑖𝑗  into an effect of the overall level of 

migration in the system of regions, an effect of the size of the population of i (origin), an effect of 
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the size of the population of j (destination), and an effect of the dependence or interaction between 

origin and destination. Since the model includes all lower-order terms contained in a higher-order 

term in the model, the total number of effects (and parameters) may exceed the number of cells in 

the contingency table, hence some parameters are redundant. To ensure that the parameters have 

unique values, restrictions are introduced, called identification or normalization restrictions. Each 

set of restrictions implies a particular coding scheme. In treatment coding (or dummy coding) one 

category is designed as the reference level, and the effects of other categories are measured relative 

to the effect of the reference category (first-order difference). In deviation coding or effect coding, 

each category gets its own parameter, and each parameter measures the effect relative the mean. In 

this coding scheme, the sum of the parameters is zero. For a discussion of coding schemes in the 

study of international migration, see Raymer (2007). A log-linear model that includes all lower-

order terms is called a hierarchical log-linear model (Agresti, 2013). A reason for including lower-

order terms is to prevent that the coding of the variables affect the statistical significance and 

interpretation of higher-order terms. Note that the values of the terms depend on the coding 

schemes adopted. 

The model specifies a log-linear relation between cell counts and effects: 

ln 𝑛𝑖𝑗 =  𝑢 + 𝑢𝑖
𝑂 + 𝑢𝑗

𝐷 + 𝑢𝑖𝑗
𝑂𝐷 (2.45) 

where O denotes origin and D destination.  The parameter u measures the effect of the level of 

migration in the system (overall effect), 𝑢𝑖
𝑂 is the effect of level of emigration from region i (row 

effect), 𝑢𝑗
𝐷 the effect of level of immigration in j (column effect) and 𝑢𝑖𝑗

𝑂𝐷 is the interaction effect. 

The log-linear model is called saturated because it includes as many independent parameters as 

there are cells in the migration flow matrix.  

Irrespective of the coding, first-order differences between parameters are unique. The odds is also 

unique: 

ln
𝑛𝑖𝑗

𝑛1𝑗
= ln𝑛𝑖𝑗 − ln𝑛1𝑗 = 𝑢 + 𝑢𝑖

𝑂 + 𝑢𝑗
𝐷 + 𝑢𝑖𝑗

𝑂𝐷 − (𝑢 + 𝑢1
𝑂 + 𝑢𝑗

𝐷 + 𝑢1𝑗
𝑂𝐷)

= 𝑢𝑖
𝑂 − 𝑢1

𝑂 + 𝑢𝑖𝑗
𝑂𝐷 − 𝑢1𝑗

𝑂𝐷
(2.46) 

To see the relation between the log-linear model and (2.38), rewrite (2.38) as  

𝑒𝑥𝑝[𝑢∗ + 𝑢𝑖
∗𝑂 + 𝑢𝑗

∗𝐷 + 𝑢𝑖𝑗
∗𝑂𝐷] = 𝐾𝑎𝑖𝑏𝑗𝑒𝑥𝑝[𝑢0 + 𝑢𝑖

0𝑂 + 𝑢𝑗
0𝐷 + 𝑢𝑖𝑗

0𝑂𝐷] 

with K a scaling factor that depends on the scaling of 𝑎𝑖 (all i) and 𝑏𝑗 (all j). The property of 

invariance of association implies that 𝑢𝑖𝑗
∗𝑂𝐷 = 𝑢𝑖𝑗

0𝑂𝐷 , and  

𝑒𝑥𝑝[𝑢∗ + 𝑢𝑖
∗𝑂 + 𝑢𝑗

∗𝐷] = 𝑎𝑖𝑏𝑗𝑒𝑥𝑝[𝑢0 + 𝑢𝑖
0𝑂 + 𝑢𝑗

0𝐷] 

If 𝐾 = exp[𝑢∗ − 𝑢0], then 𝑢𝑖
∗𝑂 = 𝑎𝑖  𝑒𝑥𝑝[𝑢𝑖

0𝑂] and 𝑢𝑗
∗𝐷 = 𝑏𝑗 𝑒𝑥𝑝[𝑢𝑗

0𝐷].  It relates the parameters of the 

log-linear model of the matrix of migration estimates to the log-linear model parameters of the 

location preference matrix.  

3 The multiregional model with preferences and 

restrictions: the macrosystem 

The multiregional model is a prototype model of international migration inspired by the Schelling 

model of residential mobility (Schelling, 1971, 2006). Individuals occupy a place and they have 

agency, i.e. they act on their preferences. Location preferences are derived from subjective place 
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utilities. Individuals who are dissatisfied with their current place of residence desire to move. That 

desire motivates action, but when individuals attempt to turn the desire into action, they face 

several obstacles, e.g. the immigration restrictions imposed by governments. To incorporate the 

restrictions imposed on aggregate migration flows into the model, a distinction is made between a 

proposed migration and the actual migration.  Individuals first apply for admission in their 

preferred place of residence. If their application is successful, i.e. they are admitted, they migrate. 

If they are not admitted, they adjust their location preferences and apply for admission next time. 

Some countries fill their quota during the first round, while other countries never reach their quota 

because they do not impose immigration quota or they are not sufficiently attractive to potential 

immigrants.   

The main features of the Schelling model and its adaptation to international migration are 

presented in Section 3.1. The distinction between macrosystem and microsystem proves to be 

useful. Section 3.2 describes the model of the macrosystem. It is based on expected values. In 

Section 3.3 the model is applied to the global system of six regions. The microsystem is covered in 

Section 4.  

3.1 The Schelling model and the adaptation to international migration 

Schelling divides space in a rectangular grid system (checkerboard). A cell of the grid system or 

square of the checkerboard is vacant or occupied. Each cell is occupied by at most one individual. 

A cell may be interpreted as an address. The number of individuals is fixed and equal to the 

number of occupied cells. Individuals have personal attributes. In the original Schelling model, the 

attribute is race or ethnicity. Individuals have location preferences (residential preferences). The 

attractiveness of a location to an individual (and the place utility attached to a location) is 

determined by the population (ethnic) composition of the neighbourhood in which the location is 

situated. Schelling postulates that individuals prefer neighbourhoods in which they are not a 

minority. That principle is based on the theory that people prefer interaction with people who are 

similar (homophily). It is quantified by a preference level or tolerance level, i.e. the share of similar 

people should be at least 50 percent. Extensions of the model considered additional personal 

attributes, other neighbourhood characteristics, other tolerance levels and individual differences in 

tolerance level (population heterogeneity). Preferences are stated preferences, i.e. preferences 

individuals have but may not be realistic due to constraints.  

Individuals have agency. They act on their preferences. An individual in a neighbourhood that 

does not meet the preference criterion (population composition) is not satisfied and intends to 

move to another neighbourhood. The individual moves to a vacant location. In the original model, 

a vacant location is selected at random from all vacant locations. Extensions introduced individual 

capabilities to collect information about the population composition of neighbourhoods and the 

selection of a location in a neighbourhood that is acceptable. Information acquisition results in an 

informed choice. A neighbourhood that is acceptable when the relocation decision is made, may no 

longer be acceptable after the move is made due to the relocation behaviour of other individuals in 

the system. Further extensions reduce and even remove vacancies, but gave individuals the 

capacity to collect information on the preferences of other individuals (e.g. through intermediaries 

such as real estate agents) and exchange or swap locations (home swapping).   

Schelling’s aim was to show that modest individual preferences coupled with a capability to act on 

the preferences can have far-reaching consequences at the population level. He showed that 

location preferences can lead to segregation. The model is also used to identify the conditions 

under which segregation occurs and to predict potential tipping points, when the population 
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composition in a neighbourhood has reached a point at which the majority population leaves and 

segregation is complete. The Schelling model triggered a great deal of theoretical, methodological 

and applied research. A number of authors approach the relocations in a grid system as a random 

walk and the segregation as the asymptotic behaviour of the random walk (Shin and Sayama, 

2014).  Several scholars formulated the Schelling model at a higher level of abstraction and 

exploited the analogy between the Schelling model and the Ising model in statistical mechanics 

(magnetism). In both models state changes (actions) are dependent upon attributes of adjacent cells 

(see e.g. Mantzaris et al., 2018).  

The basic philosophy of the Schelling model remains valid when neighbourhoods are replaced by 

countries and groups of countries. The spatial structure is represented by a set of countries rather 

than a grid system. Individuals assign attributes to countries and attach place utilities. The place 

utilities depend on attributes of countries and not attributes of neighbouring countries. As in the 

Schelling model, individuals have no control over the attributes of countries and the policies 

enacted by national governments. Immigration quota are analogous to vacancies in the Schelling 

model. They are capacity constraints that restrict the freedom of movement A fundamental feature 

of immigration quota or caps on the number of immigrants admitted during a given period, is that 

they impose conditions that aggregate flows must satisfy. Since migrants have no control over 

admission policies and their implementations, they comply with the restrictions imposed or they 

find another strategy to reach their goals. Some circumvent the restrictions by crossing borders 

clandestinely or by overstaying authorized lengths of stay. It usually requires the support from a 

social network (Simon et al., 2018). Capacity constraints have been used before in models of 

international migration. Napierala et al. (2021) consider capacity constraints in forecasting asylum-

related migration flows. 

Individuals who intend to migrate respond to the presence of admission rules by applying for 

admission (entry visa). Individuals admitted migrate. Note that migration is no longer an event, 

but an outcome of a process consisting of stages: (a) migration intention, (b) application for 

admission, and (c) migration. Other stages may be added. The outcome of that process depends on 

an individual’s intention, an admission or acceptance criterion, and on the application being 

accepted, which may partly be determined by chance. If the distribution of location preferences in 

a population is known, and the acceptance criterion is the availability of vacancies (quota not 

reached), then the procedure is quite simple and the solution can be obtained analytically. The 

method is presented in Section 3.2. If additional criteria are imposed, an analytical solution is no 

longer feasible and the solution should be obtained by simulation. For instance, if the requirement 

is to obtain a migration flow that satisfies marginal totals, reflects individual location preferences 

as accurately as possible, and is more probable than any other migration flow that satisfies these 

conditions, then simulation is the only option. The algorithm that operationalizes this procedure 

that meets these requirements resembles the Metropolis algorithm (Metropolis et al., 1953). The 

algorithm is widely used across the sciences. Its extension, the Metropolis-Hastings algorithm, 

represents the core of Markov chain Monte Carlo (MCMC), which is an algorithm for sampling 

from an unknown probability distribution with a probability density (continuous random 

variable) or probability mass function (discrete random variable) that is proportional to a known 

function.  

Individuals share a location (region) and have location preferences. Unlike in the Schelling model, 

the factors that determine the perceived place utility are not identified. They are implicit in 

location preferences revealed by past migration flows. Data show that most people stay in their 
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current region of residence. They are satisfied, lack the resources to migrate, or are attached to 

their current place of residence for other reasons. The World Gallup Poll revealed that about 20 

percent of the world population desires to emigrate. Stated preferences do not fully consider the 

different types of restrictions that apply, however. Due to different types of restrictions, a little 

over one percent plans to emigrate and less than one percent prepare for emigration. Globally, not 

more than 1.2 percent of the population live in a country other than their country of residence 5 

years ago (Abel and Cohen, 2019) and 0.6 percent live in another region than their region of 

residence 5 years ago (Tables B.9 and B.10). If changes in location preferences are allowed, then 

immigration restrictions may affect all location preferences, including the preference to stay in the 

current region of residence. In other words, immigration restrictions affect the entire probability 

distribution of location preferences. As shown in Section 2 of the paper, some key features of the 

distribution remain unchanged.  

An individual with a preferred region of residence other than the current region of residence, 

proposes a migration to the preferred region of residence. The proposed destination is selected at 

random from possible destinations or the proposal is an informed choice. In case of random 

selection, the destination is obtained by simple multinomial sampling of possible destinations 

using the probability mass function of the location preferences. The proposal destination is 

accepted if it meets the conditions imposed by the immigration restrictions. For instance, the 

proposal may be accepted of the immigration quota is not reached yet or if the immigrants has 

certain desirable attributes. An important feature of the model is that the acceptance of an 

individual’s proposal depends on proposals and actions of other individuals in the system of 

regions. If an individual is not admitted, then the individual stays in the region of residence and 

gets another chance to propose a destination in the next step of the simulation, provided some 

immigration countries have vacancies or a more liberal admission policy. Once a proposal is 

accepted, the individual relocates to the selected region of destination.  

Extensions may give individuals the capability to acquire information about admission policies 

and adapt their location preferences based on that information. Individuals may also interact with 

other individuals in the current region of residence and in the possible regions of destination 

(diaspora). They may exchange information, opinions, resources, goods and services with 

members of a social network. Relationships between individuals are not considered in this paper, 

but the microsimulation is sufficient flexible to introduce relationships and social network support. 

Extensions of the model may also consider more complex and realistic decision processes that 

involve cognitive and social processes. Finally, extensions may consider location swapping. When 

individuals exchange locations, the marginal totals of the migration flow matrix are not affected. 

The origin-destination interaction is affected, however.  

3.2 Method 

The multiregional model with preferences and restrictions is visualized in a flow diagram (Figure 

3.1). Two types of actors at two different levels of aggregation are distinguished. At the micro-

level, individuals are the actors. At the country level, governments are the actors.  

Let Pop(t) be the column vector of number of individuals by country (region) of residence at time t 

and Pref the location preference matrix. All vectors are column vectors unless specified differently. 

An element 𝑃𝑟𝑒𝑓
𝑖𝑗

 of Pref is the proportion of the residents of country i that denotes country j as 

the preferred country of residence. The diagonal elements denote the proportions satisfied with 
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their country of residence. The matrix Pref0, introduced later, is Pref with the diagonal elements 

set to zero. It is the location preference matrix excluding the desire to stay. The number of 

individuals by country of residence at t and preferred country of residence is the matrix 𝑺𝑭(𝑡): 

𝑺𝑭(𝑡) = 𝑑𝑖𝑎𝑔[𝑷𝒐𝒑(𝑡)] 𝑷𝒓𝒆𝒇 (3.1) 

An element 𝑆𝐹𝑖𝑗(𝑡) of 𝑺𝑭(𝑡) denotes the number if country in i at time t that prefers to live in 

country j. The diagonal elements of 𝑺𝑭(𝑡) show the number of individuals in their preferred 

country (or region) of residence. They are satisfied. The off-diagonal elements show the number of 

dissatisfied individuals, by country of residence at t and preferred country of residence. The row 

sum of the off-diagonal elements is the number of dissatisfied individuals in country i at t. The 

column sum is the total number of dissatisfied individuals interested in moving to country j. If all 

these people apply for admission, it is the number of applications received by country j. 𝑺𝑭(𝑡) with 

the diagonal elements set to zero is denoted by 𝑺𝑭0(𝑡). The matrix gives the number of dissatisfied 

people by current country of residence and preferred country of residence.  

Destination countries have different policies and apply different criteria to admit people. Suppose 

they impose immigration quota but they are indifferent about who applies for a residence permit 

and who they admit. This means that immigrants are selected randomly. The probability that 

country j accepts the application of a resident of country i to fill the immigration quota depends on 

the number of individuals in i with j as the preferred country of residence (ji). It residents of i 

submit many more applications to country j then residents of other countries, then their share in 

the admissions is higher than that of other countries. The proportions admitted during the unit 

interval following time t are obtained by dividing the elements of 𝑺𝑭0(𝑡) by their column sums: 

𝑷𝒂𝒅𝒎(𝑡) = 𝑺𝑭0(𝑡) [𝑑𝑖𝑎𝑔[𝟏′ 𝑺𝑭0(𝑡)]]
−1

(3.2) 

An element 𝑃𝑎𝑑𝑚𝑖𝑗(𝑡) of the admission matrix is an estimate of the probability that an individual 

admitted in country j originates from country i. The admission matrix is also referred to as 

recruitment matrix and the admission probability as a recruitment probability. Note that the 

admission probabilities depend on the number of people in each country and their location 

preferences. If the individuals admitted are selected randomly from the applications, then the 

relation between recruitment probabilities and individual location preferences is 

𝑷𝒂𝒅𝒎(𝑡) = 𝑑𝑖𝑎𝑔[𝑷𝒐𝒑(𝑡)] 𝑷𝒓𝒆𝒇𝟎  𝑑𝑖𝑎𝑔{[𝟏′ 𝑑𝑖𝑎𝑔[𝑷𝒐𝒑(𝑡)] 𝑷𝒓𝒆𝒇𝟎]−1}  

The total number of people admitted in j or residence permits issued by j is determined by the 

immigration quota. If the number of applications country j receives exceeds the immigration quota, 

the number of applications honoured and people selected for immigration is the immigration 

quota, while the remaining applications are rejected. If the immigration quota of j is higher than 

the number of people interested in j, all applicants are admitted and j and an unfilled quota 

remains. The number of applicants selected, by country of destination or immigration, is 

𝒏𝒂𝒅𝒎(t) = min[𝒒𝒖𝒐𝒕𝒂(𝑡), [𝟏′ 𝑺𝑭0(𝑡)]′] (3.3) 

where 𝒒𝒖𝒐𝒕𝒂(𝑡) is the column vector of immigration quota by country and 𝟏′ is a row vector of 

ones. Note that 𝟏′ 𝑺𝑭0(𝑡)is a row vector and [𝟏′ 𝑺𝑭0(𝑡)]
′
 is a column vector. The minimum values 

are selected elementwise. For countries without immigration quota, the quota is fixed at a very 
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high number so that the number of applications will never exceed the quota. The number of 

applications by country of origin and country of admission is 

𝒏𝒂𝒅𝒎𝑶𝑫(𝑡) = 𝑷𝒂𝒅𝒎(𝑡) 𝑑𝑖𝑎𝑔[𝒏𝒂𝒅𝒎(𝑡)] (3.4) 𝒏𝒂𝒅𝒎𝑶𝑫(𝑡) = 𝑷𝒂𝒅𝒎(𝑡) 𝑑𝑖𝑎𝑔[𝒏𝒂𝒅𝒎(𝑡)] (3.4) 

The column sums of the matrix 𝒏𝒂𝒅𝒎𝑶𝑫(𝑡) gives the number of individuals each country admits 

and the row sums gives the number of individuals by country of current residence admitted in 

their preferred country of residence. The column sums are 𝒏𝒂𝒅𝒎𝑑𝑒𝑠(t) = 𝟏′ 𝒏𝒂𝒅𝒎𝑶𝑫(𝑡). The row 

sums are 𝒏𝒂𝒅𝒎𝑜𝑟𝑖𝑔(𝑡) = 𝒏𝒂𝒅𝒎𝑶𝑫(𝑡) 𝟏 with 1 a column vector of ones and 𝟏′ a row vector of 

ones.  

The number of individuals who are dissatisfied with their country of residence and apply for 

immigration in their preferred country of residence, but whose application is rejected, is  

𝒏𝒐𝒕𝒂𝒅𝒎𝑶𝑫(𝑡) = 𝑺𝑭0(𝑡) −  𝒏𝒂𝒅𝒎𝑶𝑫(𝑡) (3.5) 𝒏𝒂𝒅𝒎𝑶𝑫(𝑡) = 𝑷𝒂𝒅𝒎(𝑡) 𝑑𝑖𝑎𝑔[𝒏𝒂𝒅𝒎(𝑡)] (3.4) 

The number of individuals not admitted, by immigration country, is 𝒏𝒐𝒕𝒂𝒅𝒎𝑑𝑒𝑠(𝑡) =

𝟏′ 𝒏𝒐𝒕𝒂𝒅𝒎𝑶𝑫(𝑡). The number not admitted to their preferred country of residence, by current 

country of residence is 𝒏𝒐𝒕𝒂𝒅𝒎𝑜𝑟𝑖𝑔 = 𝒏𝒐𝒕𝒂𝒅𝒎𝑶𝑫(𝑡) 𝟏.  

An admission is followed by a migration. Individuals admitted to their preferred country of 

residence migrate during the time interval from t to t+1. Hence 𝒏𝒂𝒅𝒎𝑶𝑫(𝑡) is also a migration 

matrix. It gives the number of migrations from country of residence at t to the preferred country 

and consequently the country of residence at t+1. Individuals whose application is not honoured 

remain, at least temporarily, in their current country of residence and continue to be dissatisfied. 

The model captures the phenomenon, revealed by several empirical studies, that insufficient legal 

pathways for immigration increases the level of dissatisfaction among people with a migration 

intention. They may apply for admission again later. Repeated rejections build frustrations, which 

may result in a decision to stay or irregular migration. In the model, irregular migration is a 

consequence of dissatisfaction due to the inadequacy of legal pathways for immigration, a link 

revealed by empirical evidence (e.g. Czaika and Hobolth, 2016; Clemens and Gough, 2018; 

Barslund et al., 2019). 

At the end of this round of applications and admissions, some countries have reached their 

immigration quota, while other countries received less immigrants than the quota allowed. The 

unfilled quota is 𝒒𝒖𝒐𝒕𝒂′(𝑡) − 𝟏′𝒏𝒂𝒅𝒎𝑶𝑫.   

The population of country j at t+1 consists of (a) residents of j who were satisfied with their place of 

residence and stayed in the country (the great majority), (b) residents of countries other than j who 

were dissatisfied with their place of residence, preferred to move to j, applied for admission, 

whose application was accepted, and who subsequently moved to j, and (c) residents of j who were 

dissatisfied with j, applied for admission in their preferred country of residence, but were not 

successful. Hence: 

𝒏𝑷𝒐𝒑(𝑡 + 1) = 𝑑𝑖𝑎𝑔[𝑺𝑭(𝑡)] +  𝒏𝒂𝒅𝒎(t) + 𝒏𝒐𝒕𝒂𝒅𝒎𝑜𝑟𝑖𝑔(𝑡) (3.6) 𝒏𝒂𝒅𝒎𝑶𝑫(𝑡) = 𝑷𝒂𝒅𝒎(𝑡) 𝑑𝑖𝑎𝑔[𝒏𝒂𝒅𝒎(𝑡)] (3.4) 
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with 𝑑𝑖𝑎𝑔[𝑺𝑭(𝑡)] the diagonal of the matrix 𝑺𝑭(𝑡)9.  

The country of residence of the population at t+1, by country of residence at t, is 

𝒏𝒍𝒐𝒄(𝑡, 𝑡 + 1) = 𝑑𝑖𝑎𝑔(𝑑𝑖𝑎𝑔[𝑺𝑭(𝑡)]) + 𝒏𝒂𝒅𝒎𝑶𝑫(𝑡) + 𝒏𝒐𝒕𝒂𝒅𝒎𝑜𝑟𝑖𝑔 (3.7) 

Suppose individuals whose applications are rejected may apply to a different country during the 

same period. Location preferences are updated accounting for the countries that reached their 

quota and are no longer possible destinations. To distinguish between countries with filled quota 

and those with unfilled quota, an indicator variable is introduced. Let 𝑞𝑢𝑜𝑡𝑒𝑐𝑖 denote the value of 

the indicator for country i. It is 1 if i reached its quota and 0 otherwise. The vector of indicator 

variables is quotac. If individuals adhere to their original location preferences but adjust the choice 

set, then the matrix of updated location preferences is 

𝑷𝒓𝒆𝒇𝒖 = [𝑑𝑖𝑎𝑔[𝑷𝒓𝒆𝒇 𝑑𝑖𝑎𝑔(𝒒𝒖𝒐𝒕𝒂𝒄) 𝟏]]
−1

 𝑷𝒓𝒆𝒇 𝑑𝑖𝑎𝑔(𝒒𝒖𝒐𝒕𝒂𝒄) (3.8) 

The first term on the right-hand-side is the inverse of a diagonal matrix. The diagonal consists of 

row sums of the updated preference matrix. If individuals may update their location preferences 

multiple times during a period, then the above function is applied recursively.  

Adherence to the initial location preferences implies that nearly all individuals who experience a 

rejection will decide to remain in their original country of residence. To remove that option, Pref is 

replaced by Pref0 in the computation of Prefu.  

To assess the quality of the flow estimates 𝒏𝒍𝒐𝒄(𝑡, 𝑡 + 1), the entropy is used as a measure of 

distance between the estimated flow and the reported flow for the period 2015-20. Entropy is a 

global measure of diversity and uncertainty. It is a popular measure in the study of complex 

phenomena. Its definition is given by equation (2.19). High entropy implies high uncertainty. 

Knowledge reduces uncertainty. In this paper, the knowledge consists of marginal totals and 

location preferences. Entropy maximization produces most probable flow estimates given the 

available knowledge. They leave as much uncertainty as possible while accounting for the prior 

knowledge. In the following subsection, it will be shown how the stepwise addition of information 

on migration flows reduces the uncertainty or, equivalently, increases the expected information 

content of the estimated migration flow.  

  

 

9 If A is a matrix, then diag(A) denotes the diagonal of A. If x is a vector, the diag(x) denotes a diagonal matrix with x in 

the diagonal.  
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3.3 Application 

Picture the world as a system of six regions and assume that regions impose a cap on the number 

of immigrants during a given period. Assume that the immigration quota imposed is based on the 

immigrations during a base period, which is 2015-2020. The assumption is unrealistic and is made 

for illustrative purposes only. A more realistic assumption is that some regions do not impose 

immigration quota. In that case, the immigration quota is set at a very large number. Table B.9 

shows the number of residents in each region at the start and the end of the base period (mid-2015 

and mid-2020). The total, 7.8 billion, is the population in 2020 by region of residence in 2020 and 

region in 2015. In the Abel-Cohen estimates, births and deaths during the period are added to and 

subtracted from the diagonal elements and return migration is accounted for. The row totals 

represent the population in 2015 and the column totals the population in 2020 by region of 

residence. The same row totals are shown in Table 3.1. 

Location preferences are assumed to be the preferences revealed by the migration flow matrix in 

the reference period 1995-2000. The location preferences are shown in Table B.12. In the absence of 

immigration quota, the location preferences determine where the population of 2015 (and present 

in 2020) lives in 2020: 𝑷𝒐𝒑𝑎(𝑡 + 1) = [𝑷𝒓𝒆𝒇]′𝑷𝒐𝒑(𝑡). 𝑷𝒐𝒑𝑎(𝑡 + 1) differs from the observed 

population in 2020 (𝑷𝒐𝒑(𝑡 + 1)) because the revealed location preferences in 1995-2000 differ from 

the migration flow in 2015-19. The population by region of residence at t and preferred region of 

residence is given by equation (3.1) and shown in Table 3.1: 

Table 3.1 Population by region of residence and preferred region of residence 
           Preferred region of residence in 2020 

Region 2015     EU+   USCan   LatAm   Africa     Asia    Rest      Sum 

     EU+    515.047   2.160   0.521    0.796    1.543   1.500  521.567 

     USCan    0.963 358.055   2.079    0.115    1.366   0.183  362.761 

     LatAm    0.843   7.749 647.368    0.008    0.176   0.031  656.174 

     Africa   3.590   1.190   0.037 1336.722    1.176   0.194 1342.908 

     Asia     3.307   5.113   0.166    0.490 4610.953   4.677 4624.705 

     Rest     2.163   0.472   0.030    0.032    1.608 257.427  261.733 

     Sum    525.913 374.739 650.200 1338.162 4616.822 264.013 7769.849 

The diagonal shows the number of people who are satisfied with their region of residence in 2015. 

The off-diagonal elements show the number of people dissatisfied with their region of residence, 

by region of residence in 2015 and preferred region of residence.  

Assume that all regions impose immigration quota and that the quota a region imposes is equal to 

its population in 2020 minus the number of their residents in 2015 who prefer to stay in the region, 

based on the location preferences revealed during the reference period 1995-2000. During the 

reference period, 98.75 percent of the residents present in EU+ at the beginning of that period 

(1995) are in EU+ at the end of the period (2000). If that location preference applies to the period 

2015-19, then 515.05 million of the 521.57 million residents in 2015 prefer to stay in EU+. The figure 

is somewhat higher than the 514.32 million estimated by Abel and Cohen (2019) (Table B.9). The 

difference is small, however, indicating stable revealed preferences. The immigration quota is the 

difference between the EU+ population in 2020 (527.55 million; Table B.9) and the number of 

people with a preference to stay in EU+ (514.32 million). The quota obtained this way is 12.51 

million, higher than the 10.87 million (Table 3.1) people in 2015 in other regions of the world who 

are dissatisfied with their place of residence and prefer to relocate to EU+. The reason for the 

difference is that the number of stayers estimated by Abel and Cohen (514.32 million) is less than 
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the number of stayers expected by the revealed location preferences. In other words, residents of 

EU+ in 2015 are a little less in favour of the EU+ than residents in 1995.  

The picture differs for USCan. For the period 2015-19, Abel and Cohen estimate that, of the 

population of 362.76 million in 2015, 355.59 million are also in USCan in 2020. Revealed location 

preferences give 358.06 million, however. Residents of USCan in 2015 have a higher preference for 

staying in USCan than residents in 1995. The higher preference for staying is probably due to the 

increased immigration restrictions during that period. It is well-known that immigration 

restrictions have the unintended side effect that immigrants are less likely to leave the country 

because of the lower prospect to return (Massey et al., 2014; de Haas et al., 2019). The computed 

immigration quota for USCan is 10.69 million, the difference between the population in 2020 

(368.75 million) and the estimated number of stayers based on the revealed preference (358.06 

million; Table 3.1). The number is considerably lower than the number of people in the rest of the 

world who are dissatisfied with their location and prefer USCan (16.68 million; Table 81). A 

consequence of that disparity is a rejection by USCan of 6 million applications for admission (one 

third).  

A total of 3.59 million persons in Africa and 0.84 million in Latin America and the Caribbean prefer 

EU+, while respectively 1.19 million and 7.75 prefer USCan, respectively.  

Table 3.2 summarizes the results obtained until now. The first columns show the population in 

2015, present in 2020, and the population in 2020 present in 2015. The number satisfied in 2015, by 

region of residence, is shown in column 3. The next two columns show the number dissatisfied, 

first by region of residence in 2015 (dissat015) and next by region of preference (dissatD15). Note 

that globally the proportion of the population that is dissatisfied with their current region of 

residence is 0.6 percent (44.28/7769.85). The immigration quota are shown next. The number 

selected, by the destination region, (nselectedD) is the number dissatisfied (dissatD15) or the 

quota, whatever is lowest. It is computed using equation (3.3). The next columns show the number 

of individuals selected and not selected, by preferred region of residence. The last column 

indicates the size of the unfilled quota. Globally, 83 percent of the applications for admission are 

accepted. Three regions do not reach their immigration quota as computed in this section: EU+, 

Latin America and the Caribbean, and Africa.  

 

Table 3.2 Summary of results 

        pop2015  pop2020  satisfied15  dissatO15  dissatD15 quota  selectedD notselectedD unfilledquota 

EU+      521.57   527.55       515.05       6.52      10.87 12.51      10.87         0.00          1.64 

USCan    362.76   368.74       358.05       4.71      16.68 10.69      10.69         5.99          0.00 

LatAm    656.17   653.56       647.37       8.81       2.83  6.19       2.83         0.00          3.36 

Africa  1342.91  1340.59      1336.72       6.19       1.44  3.87       1.44         0.00          2.43 

Asia    4624.71  4616.03      4610.95      13.75       5.87  5.08       5.08         0.79          0.00 

Rest     261.73   263.37       257.43       4.31       6.59  5.94       5.94         0.65          0.00 

Sum     7769.85  7769.85      7725.57      44.28      44.28 44.28      36.85         7.43          7.43 

 

The regions of origin of applicants admitted to a region are determined by the total number 

admitted and the recruitment matrix. The matrix of recruitment probabilities, computed using 

equation (3.2), is shown in Table 3.3. One third of the individuals admitted in EU+ during the 

reference period (1995-2000) is from Africa, 30 percent from Asia and 20 percent from the rest of 

the world.  
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Table 3.3 Admission probabilities 

                     Region admitting applicants 

Region 2015       EU+   USCan   LatAm  Africa    Asia    Rest 

       EU+    0.00000 0.12947 0.18396 0.55248 0.26286 0.22781 

       USCan  0.08867 0.00000 0.73394 0.07953 0.23279 0.02782 

       LatAm  0.07758 0.46445 0.00000 0.00562 0.02998 0.00472 

       Africa 0.33035 0.07131 0.01295 0.00000 0.20032 0.02953 

       Asia   0.30434 0.30647 0.05850 0.33996 0.00000 0.71012 

       Rest   0.19907 0.02830 0.01065 0.02242 0.27405 0.00000 

       Sum    1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

 

Table 3.4 shows, for each region of origin, how many dissatisfied individuals are admitted to their 

preferred region of residence. The figures are obtained by equation (3.4). The table also shows the 

number not admitted and the total. The row sum gives the number of applications granted and 

rejected by region of origin. The picture for the EU+ is very different from that of USCan. In 

USCan, almost half of those admitted are from Latin America and the Caribbean. The proportion 

originating from Asia is the same as in EU+.  

Table 3.4 Number of individuals whose application for admission are accepted/rejected, 

by region of origin and preferred region of residence (in million) 

A. Application for admission granted 
             PreferredRegion 

CurrentRegion   EU+ USCan LatAm Africa Asia Rest   Sum 

       EU+     0.00  1.38  0.52   0.80 1.33 1.35  5.39 

       USCan   0.96  0.00  2.08   0.11 1.18 0.17  4.50 

       LatAm   0.84  4.96  0.00   0.01 0.15 0.03  6.00 

       Africa  3.59  0.76  0.04   0.00 1.02 0.18  5.58 

       Asia    3.31  3.28  0.17   0.49 0.00 4.22 11.46 

       Rest    2.16  0.30  0.03   0.03 1.39 0.00  3.92 

       Sum    10.87 10.69  2.83   1.44 5.08 5.94 36.85 

 

B. Application for admission rejected 
             PreferredRegion 

CurrentRegion EU+ USCan LatAm Africa Asia Rest  Sum 

       EU+      0  0.78     0      0 0.21 0.15 1.13 

       USCan    0  0.00     0      0 0.18 0.02 0.20 

       LatAm    0  2.78     0      0 0.02 0.00 2.81 

       Africa   0  0.43     0      0 0.16 0.02 0.61 

       Asia     0  1.84     0      0 0.00 0.46 2.30 

       Rest     0  0.17     0      0 0.22 0.00 0.39 

       Sum      0  5.99     0      0 0.79 0.65 7.43 

 

C. Total applications for admission 
             PreferredRegion 

CurrentRegion   EU+ USCan LatAm Africa Asia Rest   Sum 

       EU+     0.00  2.16  0.52   0.80 1.54 1.50  6.52 

       USCan   0.96  0.00  2.08   0.11 1.37 0.18  4.71 

       LatAm   0.84  7.75  0.00   0.01 0.18 0.03  8.81 

       Africa  3.59  1.19  0.04   0.00 1.18 0.19  6.19 

       Asia    3.31  5.11  0.17   0.49 0.00 4.68 13.75 

       Rest    2.16  0.47  0.03   0.03 1.61 0.00  4.31 

       Sum    10.87 16.68  2.83   1.44 5.87 6.59 44.28 
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Individuals who are admitted in their preferred region of residence migrate to that region, while 

individuals whose application for admission is rejected stay in their initial region of residence (and 

remain dissatisfied with their place of residence). The distribution of the population by initial 

region of residence (2015), region of residence at the end of the procedure, and level of satisfaction 

at that time is shown in Table 3.5. Notice that 0.2 million individuals in USCan are dissatisfied. The 

reason is that they were dissatisfied with USCan in 2015 and preferred to relocate to Asia or the 

Rest of the World, but their application was rejected (see Table 3.4, panel B). In EU+, 1.13 million 

individuals are dissatisfied with their region of residence. Most prefer USCan (0.78 million), 

followed by Asia (0.21 million) and rest of the world (0.15 million). The number of applications 

rejected by USCan is the total number of applications (2.61 million; Table 3.1) and the number 

accepted (1.38 million; Table 3.4A). In Latin America and the Caribbean, almost all of the 2.81 

million residents who applied unsuccessfully during the period 2015-19 to any other region, were 

rejected by USCan (2.78 million).  

The population in 2020 predicted by the multiregional model is shown in the column totals in 

Table 3.5 C. The figures differ slightly from the actual population in 2020, which is shown in the 

column totals in Table 3.6. The difference is due to the number of dissatisfied individuals. A total 

of 0.2 million residents of USCan in 2015 were dissatisfied and applied for admission to another 

region, but were not admitted. They remain in USCan, which explains that the figure in Table 3.5 C 

(368.95) exceeds the observed figure (368.74) by 0.2 million. Notice that the observed number of 

satisfied residents in USCan in 2020 is 368.74  (Table 3.5 A, sum of second column). For EU+, the 

reason for the difference is more complex. It is the difference between the unfilled quota (1.64; 

Table 3.2) and the number of EU+ residents in 2015 that was dissatisfied and preferred to move to 

a region other than the EU+ (mainly USCan), but their application was rejected (1.13; Table 3.5 B). 

The difference is 0.51, which is also the difference between the population in EU+ in 2020 (527.55 

million) and the value predicted by the multiregional model (527.04). If the number of dissatisfied 

residents of EU+ unable to move to their preferred region of residence would be equal to the 

unfilled immigration quota of EU+, then the model would produce a perfect prediction of the 

observed number of residents in 2020.  

The population in 2020 predicted by the model tends to the observed population in that year (i.e. 

estimated by Abel and Cohen) if dissatisfied residents get the opportunity to update their location 

preferences and move to their updated preferred region of residence. The 0.2 million dissatisfied 

individuals in USCan would move to regions with unfilled immigration quota. It would eliminate 

dissatisfaction of USCan residents with their region of residence and would reduce the unfilled 

immigration quota in the regions that receive these immigrants. The capacity of individuals to 

update location preferences in light of information that some regions have reached their 

immigration quota eliminates the unfilled immigration quota and ensures that the population in 

2020 predicted by the model is equal to the observed population. 

Table 3.6 shows the population by region in 2015 and 2020, estimated by Abel and Cohen, 

augmented by stayers in their country of birth, derived from UN population data (see Annex B).  A 

comparison of Table 3.6 and Table 3.5C reveals that fewer people stayed in EU+ than predicted by 

the model (514.31 versus 516.18). The difference is explained by a higher than expected migration 

of EU+ residents (2015) to Africa and Asia. It is very likely that these people are return migrants. 

The model also predicts more immigrants from Africa in EU+ than estimated by Abel and Cohen 

(3.59 million versus 2.71 million). The model, however, underestimates the number of immigrants 

from Asia (3.31 million versus 5.73 million). The model also underestimates the number of 

immigrants in the USCan originating from Asia and Africa, although it predicts very well the 

number of immigrants from Latin America and the Caribbean. The differences are caused by the 
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revealed location preferences used to predict migration flows and indicate a shift in location 

preferences. For instance, the data reveal a shift in revealed destination preferences of African 

residents in the last decades. The EU+ has become less popular, while USCan has become more 

popular. It is part of a diversification of African emigration, which, according to Flahaux and De 

Haas (2016) is partly driven by immigration restrictions by European states. 

Table 3.5 Number of people by region of residence in 2015, region of residence in 2020, 

and level of satisfaction with their location in 2020 (in million) 

A. Satisfied 
             CurrentRegion 

InitialRegion    EU+  USCan  LatAm  Africa    Asia   Rest     Sum 

       EU+    515.05   1.38   0.52    0.80    1.33   1.35  520.44 

       USCan    0.96 358.05   2.08    0.11    1.18   0.17  362.56 

       LatAm    0.84   4.96 647.37    0.01    0.15   0.03  653.36 

       Africa   3.59   0.76   0.04 1336.72    1.02   0.18 1342.30 

       Asia     3.31   3.28   0.17    0.49 4610.95   4.22 4622.41 

       Rest     2.16   0.30   0.03    0.03    1.39 257.43  261.35 

       Sum    525.91 368.74 650.20 1338.16 4616.03 263.37 7762.42 

 

B. Not satisfied 
             CurrentRegion 

InitialRegion  EU+ USCan LatAm Africa Asia Rest  Sum 

       EU+    1.13   0.0  0.00   0.00  0.0 0.00 1.13 

       USCan  0.00   0.2  0.00   0.00  0.0 0.00 0.20 

       LatAm  0.00   0.0  2.81   0.00  0.0 0.00 2.81 

       Africa 0.00   0.0  0.00   0.61  0.0 0.00 0.61 

       Asia   0.00   0.0  0.00   0.00  2.3 0.00 2.30 

       Rest   0.00   0.0  0.00   0.00  0.0 0.39 0.39 

       Sum    1.13   0.2  2.81   0.61  2.3 0.39 7.43 

 

C. Total 
             CurrentRegion 

InitialRegion    EU+  USCan  LatAm  Africa    Asia   Rest     Sum 

       EU+    516.18   1.38   0.52    0.80    1.33   1.35  521.57 

       USCan    0.96 358.26   2.08    0.11    1.18   0.17  362.76 

       LatAm    0.84   4.96 650.18    0.01    0.15   0.03  656.17 

       Africa   3.59   0.76   0.04 1337.33    1.02   0.18 1342.91 

       Asia     3.31   3.28   0.17    0.49 4613.25   4.22 4624.71 

       Rest     2.16   0.30   0.03    0.03    1.39 257.81  261.73 

       Sum    527.04 368.95 653.01 1338.77 4618.33 263.75 7769.85 

 

The results should also be compared to the most probable migration flow that satisfies the 

marginal totals of the reported migration flow 2015-19 (Table 3.6) and reflects as accurately as 

possible the location preferences revealed by the 1995-00 migration flow. The estimates are 

obtained by the method of entropy maximization (Section 2.3). Abel’s R package migest is used. 

The estimates are shown in Table 3.7. An interesting relation exists between the original location 

preferences (Table C.5 in Annex C) (A), the location preferences revealed by the migration 

estimates (B), and the location preferences revealed by the relocation pattern of individuals who 

successfully applied for admission to their preferred region of residence (Table 3.5A) (C). First, 

compare A and B. The location (destination) preferences revealed by B differ from the original 

location preferences. The relative location preferences differ too. Ratios of relative preferences, i.e. 

odds ratios, do not differ, however. It is a consequence of the multiplicative invariance of 

association, discussed in Section 2. The estimation method (IPF) does not preserve the relative 
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location preferences, but preserves the ratios of relative preferences. In other words, first-order 

differences are not preserved, but second-order differences are. Next, compare A and C. The 

location preferences revealed by the relocation of successful applicants differ from the original 

location preferences. Some relative preferences are different and other are equal. The relative 

destination preferences revealed by the migration of individuals admitted in their preferred region 

of residence are equal to the original relative location preferences only for destination with unfilled 

immigration quota. Equality indicates that individuals could realize their location preferences 

because immigration quota do not represent binding constraint.  

Table 3.6 Population by region in 2015 and 2020 (in million) 

                  Region in 2020 

Region 2015       EU+  USCan  LatAm  Africa    Asia   Rest     Sum 

        EU+    514.31   1.28   0.90    1.33    2.02   1.72  521.57 

        USCan    1.38 355.59   2.92    0.33    2.10   0.43  362.76 

        LatAm    1.57   4.91 649.47    0.01    0.13   0.08  656.17 

        Africa   2.71   1.13   0.02 1337.94    0.98   0.13 1342.91 

        Asia     5.73   5.49   0.21    0.89 4608.90   3.47 4624.71 

        Rest     1.84   0.34   0.03    0.08    1.90 257.53  261.73 

        Sum    527.55 368.74 653.56 1340.59 4616.03 263.37 7769.85 

Source: UN data and estimates by Abel and Cohen (2019) 

 

Table 3.7 Population by region in 2015 and 2020 reflecting location preferences (in million) 

                             Region in 2020 

Region 2015       EU+  USCan  LatAm  Africa    Asia   Rest     Sum 

        EU+    515.96   1.53   0.53    1.01    1.28   1.25  521.57 

        USCan    1.36 356.40   2.98    0.21    1.60   0.21  362.76 

        LatAm    0.83   5.39 649.77    0.01    0.14   0.03  656.17 

        Africa   2.83   0.66   0.03 1338.49    0.77   0.13 1342.91 

        Asia     3.98   4.35   0.20    0.75 4610.72   4.69 4624.71 

        Rest     2.59   0.40   0.04    0.05    1.60 257.05  261.73 

        Sum    527.55 368.74 653.56 1340.52 4616.11 263.37 7769.85 

 

The data used to estimate the migration flow in 2015-19 contribute differently to the estimates. To 

determine the contributions of data sources, the extent to which they reduce the uncertainty is 

quantified. The entropy is used to quantify the uncertainty. The entropy of a directional migration 

flow (macrostate) is maximum when all individuals in a population have the same probability of 

relocation from j, irrespective of their current residence. In that case, all migrant transition 

probabilities are the same and the entropy of the 6-region systems is 

𝐻𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = −∑ 𝑝𝑖𝑗
𝑢𝑛𝑖𝑓𝑜𝑟𝑚 ln 𝑝𝑖𝑗

𝑢𝑛𝑖𝑓𝑜𝑟𝑚

𝑖,𝑗
 

with 𝑝𝑖𝑗 = 1/36, which is 𝐻 = 𝑙𝑛 (36) = 3.58. Knowledge of the marginal distributions (population 

distribution in 2015 and population distribution in 2020) reduces the entropy of the macrostate to 

2.52. Knowledge of the location preference matrix, revealed by the 1995-00 migration flow, reduces 

the uncertainty further to an entropy of 1.30. This value is computed as 𝐻𝑒𝑠𝑡𝑖𝑚 =

−∑ 𝑝𝑖𝑗
𝑒𝑠𝑡𝑖𝑚 ln 𝑝𝑖𝑗

𝑒𝑠𝑡𝑖𝑚
𝑖,𝑗  with 𝑝𝑖𝑗

𝑒𝑠𝑡𝑖𝑚 computed by equation (2.38): 𝑝𝑖𝑗
𝑒𝑠𝑡𝑖𝑚 =

𝑛𝑖𝑗
𝑒𝑠𝑡𝑖𝑚

𝑛++
∗ = 

𝑎𝑖𝑏𝑗𝑛𝑖𝑗
0

∑ 𝑎𝑖𝑏𝑗𝑛𝑖𝑗
0

𝑖𝑗

. The 

reduction from 2.52 to 1.30 is due to the information on the dependence between origin and 

destination contained in the preference matrix. Hence information on revealed location preferences 

substantially reduces the uncertainty in the estimates of migration flows. The entropy of the 
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reported migration flow during the period 2015-19 (1.3016) is close to the entropy of the migration 

flow during the period 1995-00 and used as revealed preferences (1.3085) and the emigration flow 

estimates for the period 2015-19 (1.2975).  

The precise contribution of information to the reduction of uncertainty in migrations flows is 

quantified by the information gain or Kullback-Leibler information divergence. The KL 

information divergence between the reported migration flow in 2015-19 and the absence of any 

knowledge (uniform distribution) on that migration flow is: 

𝐷𝐾𝐿(𝑝𝑖𝑗
15−19 ‖𝑝𝑖𝑗

𝑢𝑛𝑖𝑓𝑜𝑟𝑚
) = ∑ 𝑝𝑖𝑗

15−19 𝑙𝑛
𝑝𝑖𝑗

15−19

𝑝𝑖𝑗
𝑢𝑛𝑖𝑓𝑜𝑟𝑚

𝑖𝑗
= 2.2819 

It is equal to the weighted sum of the uniformly distributed relocation probabilities 𝑝𝑖𝑗
𝑢𝑛𝑖𝑓𝑜𝑟𝑚 with 

weights the relocation probabilities in 2015-19 minus the entropy of the reported flow in 2015-19: 

𝐷𝐾𝐿(𝑝𝑖𝑗
15−19‖𝑝𝑖𝑗

𝑢𝑛𝑖𝑓𝑜𝑟𝑚
) = ∑ 𝑝𝑖𝑗

15−19 𝑙𝑛
1

𝑝𝑖𝑗
𝑢𝑛𝑖𝑓𝑜𝑟𝑚

𝑖𝑗
− [∑ 𝑝𝑖𝑗

15−19

𝑖𝑗
ln

1

𝑝𝑖𝑗
15−19

] = 3.5835 − 1.3016

= 2.2819 

𝐷𝐾𝐿(𝑝𝑖𝑗
15−19 ‖𝑝𝑖𝑗

𝑖𝑛𝑑𝑒𝑝) = ∑ 𝑝𝑖𝑗
15−19 𝑙𝑛

𝑝𝑖𝑗
15−19

𝑝
𝑖𝑗
𝑖𝑛𝑑𝑒𝑝𝑖𝑗 = 1.2207.  Knowledge of the marginal distributions of the 

2015-19 flow reduces the uncertainty from 2.28 to 1.22. Knowledge of the joint distribution of 

region of residence in 1995 and region of residence in 2000 reduces the uncertainty further to 

0.0083, a significant reduction. It is the KL information divergence 𝐷𝐾𝐿(𝑝𝑖𝑗
15−19 ‖𝑝𝑖𝑗

95−00) =

∑ 𝑝𝑖𝑗
15−19 𝑙𝑛

𝑝𝑖𝑗
15−19

𝑝𝑖𝑗
95−00𝑖𝑗 = 0.0083. That major reduction is possible only if the dependence between 

origin and destination in 2015-19 is similar to that in 1995-00. Notice that the joint distribution is 

different from the location preferences used in the previous analysis, which are conditional 

probabilities (location preferences conditional on region of residence at the start of the interval). 

The joint distribution carries more information than the conditional distribution. Knowledge of the 

conditional distribution would reduce the uncertainty from 1.22 to 0.53: 𝐷𝐾𝐿(𝑝𝑖𝑗
15−19 ‖𝑝𝑖𝑗

𝑙𝑜𝑐𝑝𝑟𝑒𝑓
) =

∑ 𝑝𝑖𝑗
15−19 𝑙𝑛

𝑝𝑖𝑗
15−19

𝑝
𝑖𝑗
𝑙𝑜𝑐𝑝𝑟𝑒𝑓𝑖𝑗 = 0.5326. Note that the joint distributions of region of residence in 1995 and 

region of residence in 2000 can be obtained by multiplying the conditional distributions for 

residents of region i in 1995 (i=1, 2, …, r) by the probabilities that a randomly selected member of 

the population in 1990 resides in i, which is the state probability introduced in Section 2. Hence the 

uncertainty reduction from 0.5326 to 0.0083 can be attributed to the knowledge of the spatial 

population distribution in 1995. A further reduction of uncertainty about the migration flow in 

2015-19  

is possible if one knows the most probable migration flow in 2015-19 that is consistent with the 

reported population in 2015 and the population in 2020 (constraints) and best reflects the location 

preferences revealed by the 1995-00 migration flow matrix. The estimates are obtained by KL 

information divergence minimization (equation 2.36). The uncertainty about the 2015-19 migration 

flow remaining in the presence of the most probable estimates that satisfy the conditions imposed 

above is 0.0002 (more precisely, 0.000249). It is considerably lower than 0.0083. The further 

reduction can be attributed to the addition of the marginal totals of the 2015-19 migration flow. 

The estimation procedure (entropy maximization) is needed to merge the dependence structure in 

the 1995-00 migration matrix and the marginal totals of the 2015-19 migration matrix. A further 

reduction to 0 can only be realized by complete information on the migration flow in 2015-19: 
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𝐷𝐾𝐿(𝑝𝑖𝑗
15−19‖𝑝𝑖𝑗

15−19) = 0. Note that the entropy of 𝑝𝑖𝑗
15−19 is not zero, but the entropy in the presence 

of prior knowledge is zero, i.e. the uncertainty remaining after the prior knowledge is accounted 

for is zero.  

Although the dependence structure in international migration flows is relatively stable, more 

recent flows are better predictors of current flows than more distant flows. Table 3.8 shows the 

uncertainty remaining after knowledge of the migration flow in a given period. The uncertainty 

remaining is quantified by the KL information divergence. A high information divergence means a 

high remaining uncertainty.  

Table 3.8 KL information divergence between historical migration flow and migration in 

2015-19 

Reference period 
1990-95 

1995-00 

2000-05 
2005-10 

2010-15 

2015-19 

KL information divergence 
0.01252 

0.00833 

0.00484 
0.00234 

0.00065 

0.00000 

 

4 Simulation of microsystems: random walk 

4.1 Introduction 

In the previous section, the focus was on the macrostates produced by individual preferences and 

immigration quota. Macrostates are described by population and transition counts. In this section, 

the attention shifts to microstates. In microstates individuals are uniquely identified by an 

identification number (ID). Individual differences are caused by observed individual heterogeneity 

and individual stochasticity due to intrinsic randomness (for the concept of individual variability, 

see Caswell, 2009). The study of microstates requires microdata, either observed data from 

censuses, population registers or sample surveys, or simulated data. In this section, the microdata 

are generated by a model the parameters of which are estimated from empirical data. Making 

inferences about individuals from aggregate data may lead to ecological fallacy. Relationships at 

the group-level do not automatically characterize the relationship at the level of the individual. 

Being mindful of population heterogeneity helps avoid the ecological fallacy (Courgeau et al., 

2017; Bijak et al., 2018, p. 171). In this chapter, aggregate characteristics are not regarded as 

substitutes for individual characteristics. Instead, actors at a higher level of aggregation, in this 

case governments, impose conditions that define properties at the macrolevel and constrain actions 

of individuals.  

Individual data with global coverage are rare. Sample surveys are generally organized at the 

country level. The World Fertility Survey and its offspring, the series of Demographic and Health 

Surveys, the series of national Health and Retirement Studies (https://g2aging.org), and the 

International Household Survey Network (https://www.ihsn.org) cover large parts of the world. 

IPUMS (https://www.ipums.org) is a data archive of census and survey data from around the 

world. Combined the sample surveys approximate a global coverage. Migration surveys with a 

global coverage do not exist. They are in the stage of being proposed (Willekens et al., 2016; 

Cerrutti et al., 2021). The advantages of sample surveys for the study of international migration are 

known for decades (see e.g. Fawcett and Arnold, 1987). The World Gallup Poll, which includes 

https://g2aging.org/
https://www.ihsn.org/
https://www.ipums.org/
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migration-related data, aims at a global coverage. In the absence of micro data, data on individuals 

are inferred from population-level data. It is a common practice to produce virtual populations. If 

data are combined from different sources, the virtual population is also known as synthetic 

population. The practice of constructing a virtual population from aggregate data is followed in 

this paper. A related practice is the sampling from contingency tables (Kyabi et al., 2018; DeSalvo 

and Zhao, 2020).  

A virtual population is a computer-generated population. The population is not directly observed, 

but is generated by stochastic simulation using a probability model. The parameters of the model 

are estimated from empirical data, usually incomplete data. The aim is to produce a virtual 

population that statistically mimics, i.e. is as close as possible to, a real population. An advantage 

of the approach is that data from different sources may be combined to generate a virtual 

population, and that the virtual population may be used to study ‘what if’ questions. The approach 

may be viewed as an extension of imputation. The imputation of missing data infers information 

that is not observed, but predicted by a model. The result is an augmented reality, i.e. a reality 

augmented by model outcomes. The validity of the predictions is very much dependent on the 

assumed distribution of individual characteristics in a population. The inference is valid if the 

virtual population has the same characteristics and behaves similarly as the real population under 

investigation. Validity implies agreement between the simulated system (microstates) and the 

observed system (macrostates). The production of a virtual population has also much in common 

with modelling unobserved population heterogeneity, in which latent subject-specific effects are 

added to population-level effects. The distribution of subject-specific effects in a population is 

represented by probability distributions with parameters estimated from empirical data. The 

Gumbel function, covered in Chapter 2, is such a distribution. It describes the effects of 

unobserved attributes of individuals and places on the utilities individuals attach to places.  

A particularly flexible individual-level model is the random walk. Individual moves are random, 

but they are constrained in different ways. In this paper, individual moves are constrained by 

governments acting on information on the collective behaviour of individuals. Constrained 

random walks have a long history. Metropolis et al. (1953) developed a method that constraints 

random walks and produces a collective outcome with desired properties. The method became 

known as the Random Walk Metropolis (RWM). It is one of the most common Markov Chain 

Monte Carlo (MCMC) algorithms in use today (see e.g. Sherlock et al., 2010). The method is very 

flexible. It enables extensions that consider personal attributes, individual differences in decision 

making and interactions between individuals. Casati et al. (2015) use the method to generate 

virtual (synthetic) populations in the presence of control totals (see also Ye et al., 2017; Müller, 

2017). Yaméogo et al. (2021) present a state-of-the-art review of methods for constructing synthetic 

populations.  

In this section, we use a sample of the world population. The sample size is one million 

individuals. Individual attributes and actions are inferred from probability distributions with 

parameters estimated from count data. Individual values are obtained by sampling from the 

probability distribution (probability mass functions since the personal attributes considered are 

discrete). 

This section consists of four subsections. The second subsection is a brief note on sampling discrete 

distributions. The third briefly reviews different types of random walk and pictures migration as a 
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random walk with preferences and barriers. The final subsection is an application to the world 

system of six regions.  

4.2 A note on sampling 

Stochastic simulation, or Monte Carlo simulation, involves sampling from multivariate probability 

distributions. It involves drawing (pseudo-)random numbers from probability distributions. Each 

draw relates to a single individual. The outcome of the sampling is a virtual population of 

individuals with personal attributes determined by the random draws. The results of sampling are 

collected in tables of counts, i.e. contingency tables. In this paper, the probability distributions are 

discrete and joint distributions are constrained by given marginal distributions. Sampling from 

multivariate distributions with fixed marginal distributions is equivalent to sampling from 

contingency tables with given marginal totals (Dobra and Mohammadi, 2018). In case of discrete 

multivariate data (cross-classified count data), Bishop et al. (1975, pp. 62ff; pp.435ff) distinguish 

the following sampling distributions: 

• Independent Poisson sampling: each cell has an independent Poisson distribution. By 

implication, the total sample size is not fixed.  

• Simple multinomial sampling: when the total sample size is fixed, the set of independent 

Poisson distributions gives a multinomial distribution. A parameter of the multinomial 

distribution is the probability that a randomly selected individual falls in a given category, 

e.g. the probability that a randomly selected individual resides in region i.  

• Product multinomial sampling: stratified simple random sampling with the total sample size 

in each stratum fixed. The sampling scheme is the product of simple multinomial sampling 

within strata. For instance, individuals are sampled from a population stratified by place of 

origin and place of destination.  

 

Simple and product multinomial sampling are the dominant types of sampling used in this paper. 

An advantage of product multinomial sampling is that aggregation of simulated individual data 

reproduces the given contingency tables exactly. Simple multinomial sampling reproduces the 

contingency tables approximately. Poisson sampling is not used in this paper because we have no 

data on migrations (events) but on migrants (transitions) only. Poisson sampling produces data 

with a variance equal to the mean. In migration data, the variability is often larger than expected 

from the Poisson distribution, a phenomenon known as overdispersion. To account for the extra 

variability, the parameter of the Poisson distribution is considered to vary randomly, i.e. it is a 

random variable. If the parameter follows a gamma distribution, then the gamma-Poisson mixture 

distribution is a negative binomial distribution, with two parameters, the mean of the Poisson 

parameter and a shape parameter of the gamma distribution, which controls the deviation from 

the Poisson distribution10. Poisson sampling is very relevant in migration research, but data issues 

 

10 Suppose a migrant makes several attempts to enter a country before a successful entry. Assume each attempt is an 

independent Bernoulli trial with probability of success p and probability of failure 1-p. The number of attempts (failures) 

until success is a random variable with  a negative binomial distribution. If the number of attempts without restriction 

follows a Poisson distribution with parameter 𝜆, then 𝜆 follows a gamma distribution with shape parameter the number 

of successes r (r=1 in this example) and scale parameter 𝜃 =
𝑝

1−𝑝
 with 𝑝 =

𝜆

𝑟+𝜆
. Hence 𝜆 =

𝑝𝑟

1−𝑝
 and the variance is 

𝜆 (1 +
𝜆

𝑟
) >  𝜆. The smaller r, the larger the overdispersion. If 𝑟 → ∞, the negative binomial distribution converges to a 

Poisson distribution with variance equal to the mean. To sample a negative binomial distribution, simulate a sequence of 
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prevent its use in this paper. The available data are transition data, i.e. data on places of residence 

at two points in time. The total number of individuals is fixed and, consequently, the maximum 

number of relocations is fixed too. It calls for multinomial sampling. 

4.3 Migration as a random walk with bias and constraints 

The system of regions considered in the previous sections consists of r region. The random 

variables 𝑋(𝑡)𝑘  and 𝑋(𝑡 + 1)𝑘  denote the region of residence of individual k at time t and t+1, 

respectively. The previous sections emphasized the probability distributions of possible values of 

𝑋(𝑡)𝑘  and 𝑋(𝑡 + 1)𝑘  (state probabilities) and the joint distributions of 𝑋(𝑡)𝑘  and 𝑋(𝑡 + 1)𝑘  

(transition probabilities). The emphasis on probability distributions of random variables rather 

than on individual values of the random variables lead to a description of macrostates. In this 

section, the emphasis is on individual values of random variables and microstates.   

The sequence of regions of residence of individual k is { 𝑋(𝑡)𝑘 , 𝑋(𝑡 + 1), 𝑋(𝑡 + 2)𝑘𝑘 , … }. The 

sequence is a stochastic process, generally known as a random walk. A stochastic process has many 

possible realizations. A particular realization is the sample path of the stochastic process.  

Dividing the world in a system of regions makes space discrete and the random walk a sequence 

of regions. A relocation is a step in a random walk. A random walk may also permit the individual 

to stay in the current location. Such a random walk is known as a lazy random walk. The destination 

of a step is random and the possible destinations follow a probability distribution. In a simple 

random walk, all possible destinations are equally probable. If some destinations are more 

probable than other, the random walk is referred as a biased random walk. In this paper, the random 

walks are mostly lazy and biased.  

The sequence of locations may be recorded without or with the time of relocation. In a recent 

review, Dshalalow and White (2021) refer to time-insensitive and time-sensitive random walks. If 

time is disregarded, the position of a walker is recorded after each step. If the walker lacks 

memory, a destination is independent of previous locations and the random walk is a Markov 

chain. The sequence of steps is governed by relocation probabilities. If the time of relocation 

matters and the walker lacks memory, then the random walk is a Markov process. Time can be 

discrete (divided into time intervals) or continuous. Random walks in discrete time are governed 

by relocation probabilities. If time is continuous, the walk is known as a continuous-time random 

walk (CTRW) and is governed by relocation rates. In the absence of memory, the CTRW is a 

continuous-time Markov process. In a CTRW, both time and destination are random variables. The 

first is described by a waiting-time distribution and the second by a Markov chain. The CTRW 

may be extended further by distinguishing process time (duration in current location) and physical 

time (time since the start), which introduces age in random walks, as recently shown by Giona et 

al. (2019). There are indications that the formalism of a random walk is tending towards that of 

continuous-time Markov processes and semi-Markov processes. These stochastic processes are also 

the probabilistic foundations of multiregional demography. Random walks in a system of regions 

therefore represent the extension of multiregional models to individual-based models (IBM). 

Multistate microsimulation models in continuous time may be viewed as a continuous-time 

 

Bernoulli trials with parameter of success p  by sampling values u from a standard uniform distribution U(0,1). When the 

number of cases with 𝑢 < 𝑝 reaches r, the number greater than p (failures) is a negative binomial random number.  

(https://en.wikipedia.org/wiki/Negative_binomial_distribution ) 

 

https://en.wikipedia.org/wiki/Negative_binomial_distribution
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random walk with transition intensities dependent on personal attributes and other predictors 

used in the model. Illustrations include microsimulation model published by Zinn (2014), the 

agent-based model by Klabunde et al. (2017) and its implementation in the domain-specific 

language ML3 (Warnke et al., 2017) and its extension by Reinhardt et al. (2022).  

Approaching a random walk as a Markov chain and a Markov process has several advantages, one 

being that models of multiregional demography can be applied. Multiregional demography 

studies the dynamics of a population in a system of regions. Random walks offers the opportunity 

to introduce individual behaviour into multiregional population dynamics. Approaching 

migration as a random walk is not new. Yasuda (1975) describes migration as a random walk. 

Zwanzig (1983) notes that migration between regions can be treated as a CTRW between these 

regions. The author also used the equivalence between the CTRW and the master equation, which 

is a flow equation used in physics and which resembles the flow equation used in multiregional 

demography. Weidlich and Haag (1988) made extensive use of the master equation in the study of 

migration, but they did not make the connection with CTRW. Kanaroglou et al. (1968) and Haag 

(2017) use random utility theory to extend the master equation to a choice process. The CTRW is 

an active field of research. Giona et al. (2019) and Dshalalow and White (2021) review the state of 

the art. Allegrini et al. (2003) added age to the Zwanzig model, turning the CTRW into a 

demographic model. Relocation in the Schelling model has also been described as a random walk 

(Shin and Sayama, 2014). Barbosa et al. (2018) and Riascos and Mateos (2021) illustrate the growing 

popularity of the random walk to model mobility patterns. Riascos and Mateos consider a biased 

random walk with preferential navigation. Preferences are determined by features of nodes in the 

network, very similar to place utility concept used in this paper. The proliferation of tracking 

technologies and digital mobility data contribute to that development in the modelling of mobility 

(Luca et al., 2023). Of importance is also the gradual shift from spatial configurations (system of 

regions/places) to a network configuration (network of regions/places). It paves the way to 

network analysis of spatial mobility patterns (see also Abel et al., 2021; Bijak, 2021). Abel et al. treat 

the world as a single network and propose entropy maximization and a random walk algorithm to 

find clusters of interconnected countries in the network.  

A random walk may be restricted by the presence of barriers. When the walker reaches a barrier, 

the walk may end (absorbing barrier) or may induce a return to the previous position (reflecting 

barrier). Other responses are possible too. A particularly important constraint, considered in this 

paper, consists of a threshold or capacity constraint. It is the maximum number of individuals in a 

place, e.g. country, at a given point in time. Immigration quota is a capacity constraint. A variety of 

restrictions may be imposed on the individual random walk. Steps in the random walk are 

conditional on meeting the constraints. If a step implies that a constraint is violated, the step is not 

permitted. Instead of constraints, a collective goal may be imposed. For instance, an individual 

step is allowed if it increases the overall utility or level of satisfaction in a population. In estimation 

problems, an individual move is admitted if it makes the collective behaviour (macrosystem) more 

probable, given the information available on the collective bahaviour. Moves that do not 

contribute to a more probable macrostate are not admitted or are admitted with a certain 

probability only. Hence individual moves that contribute to a more probable macrosystem are 

sampled more frequently than moves that do not contribute to the goal. This type of sampling is 

acceptance-rejection sampling. It forms the basis for algorithms such as the Metropolis algorithm.  

Destination preference results in biased random walks. Recall that the odds that k prefers j rather 

than the reference region 𝑟′ is given in equation (2.17): 
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𝜃𝑗𝑘 =
𝑝𝑗𝑘

𝑝𝑟′𝑘

= 𝑒𝑥𝑝[ 𝑣𝑘 𝑗 − 𝑣𝑘 𝑟′] 

The multinomial logit is given in (2.18). The probability that k selects j as the preferred region of 

residence is given by (2.16). In the absence of data on place utilities, the location preferences are the 

preferences revealed by the migration flows during a past reference period. In Section 2, the 

revealed preference is by 𝑝𝑖𝑗
0 = 𝑛𝑖𝑗

0 / ∑ 𝑛𝑖𝑗
0

𝑗   with 𝑛𝑖𝑗
0  the observed number of individuals with 

residence in i at the beginning of the reference period and residence in j at the end of the reference 

period. The probability that a residents of region i prefers j over other regions is equal to the 

proportion of residents of i at the beginning of the reference period that reside in j at the end of the 

reference period. The equation is valid only if (a) individuals are allowed to stay in their region of 

residence and (b) the same distribution of destination preferences applies to all residents of i. 

Hence the probability that individual k selects j as the preferred region of residence is: 

𝑝𝑘 𝑖𝑗
0 = 𝑝𝑖𝑗

0 = 𝑛𝑖𝑗
0  /  𝑛𝑖+

0             𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 (4.1) 

To determine which destination individual k with current residence i chooses as the preferred 

region of residence, two procedures may be followed. The first involves a Bernoulli trial, the 

second a random draw from a multinomial distribution. Let 𝑢𝑘  denote a (pseudo)random number 

drawn from a standard uniform probability distribution. If 𝑢𝑘 ≤ 𝑝𝑖𝑗
0 , then individual k prefers 

region j, otherwise k does not prefer region j. The outcome of the simulation experiment is a 

Bernoulli random variable, which is 1 of k prefers j over other regions and 0 otherwise. The 

experiment is equivalent to a single random draw from a Bernoulli distribution. The second 

procedure is to drawn a random number from the multinomial distribution with parameters 

{𝑝𝑖1
0 , 𝑝𝑖2

0 , 𝑝𝑖3
0 ,… , 𝑝𝑖𝑟

0 } 11. The sampling results in a random vector of length r with elements 0 except 

for the element that denotes the preferred destination, which receives a value 1. Notice that the 

procedure implies that individuals in region i differ randomly in the place utility they attach to 

region j and that the differences follow a Gumbel distribution (See Section 2).  

If all individuals in i have the same preferences {𝑝𝑖1
0 , 𝑝𝑖2

0 , 𝑝𝑖3
0 , … , 𝑝𝑖𝑟

0 }, a shortcut is to sample 𝑛𝑖+ 

values from the multinomial distribution, with 𝑛𝑖+ the number of residents in i at a point in time. 

Sampling generates a vector that gives the number of residents of i by preferred region of 

residence (including the current location). It does not identify the individuals who prefer a given 

region, j say. The reason in the absence of IDs. To determine the IDs of the individuals who prefer 

j, 𝑝𝑖𝑗
0 𝑛𝑖+ individuals are selected at random from the 𝑛𝑖+ residents of i, without replacement. The 

procedure is repeated for all j. Suppose sampling starts with sampling 𝑝𝑖1
0 𝑛𝑖+ individuals from all 

residents of i. At the start of the procedure, no resident of i has been assigned a location preference. 

After the sampling, 𝑝𝑖1
0 𝑛𝑖+ residents of i received a location preference. The selected individuals 

prefer region 1. To determine the individuals who prefer region 2,  𝑝𝑖2
0 𝑛𝑖+ individuals are selected 

at random from the residents of i who did not yet receive a location preference. The procedure is 

repeated until all 𝑛𝑖+ individuals have a location preference assigned. Note that, since ∑ 𝑝𝑖𝑗
0𝑟

𝑗=1 = 1, 

exactly 𝑛𝑖+ individuals are assigned a location preference. The computational procedure is flexible. 

It allows for more complicated sampling than simple random sampling. For instance, individuals 

born in region h may be assigned much higher preferences for that region than assigned to 

individuals not born in h.  

 

11 An alternative but equivalent method is a random draw from the standard uniform distribution. If the value is 

between 0 and p1, the destination is 1. It is 2 if the value is between p1 and p1+p2. It is 3 if the value is between p1+p2 and 

p1+p2+p3, and so on. 
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To accommodate immigration quota and other restrictions, a step in the random walk involves 

two activities. A first activity is to propose a preferred destination. If the proposal is accepted, it is 

followed by the actual relocation. Two variants of a random walk are considered: (a) biased and 

restricted random walk, and (b) biased and restricted random walk with an additional acceptance 

criterion. The first variant is covered in this subsection, the second is not covered in this paper.  

 

For each member of the population a single random number is drawn from a multinomial 

distribution with parameters {𝑝𝑖1
0 , 𝑝𝑖2

0 , 𝑝𝑖3
0 ,… , 𝑝𝑖𝑟

0 }, where i is the current location of an individual 

and ∑ 𝑝𝑖𝑗
0 = 1𝑟

𝑗=1 . Most residents of i prefer to stay in i. Suppose resident k proposes a relocation to 

region j. The proposal is accepted if the total number of individuals who already moved to j, which 

we denote by 𝑛+𝑗
∗ , is strictly less than the immigration quota imposed, i.e. 𝑛+𝑗

∗ < 𝑛+𝑗 . The condition 

is a capacity constraint. Regions that have not reached their immigration quota are said to have 

vacancies, a concept borrowed from the Schelling model. The acceptance criterion is therefore 

𝑛+𝑗
∗ + 1 ≤ 𝑛+𝑗. If region j has no vacancies, then k may update her location preferences and 

propose an alternative destination. Such a response introduces a substitution effect of the 

immigration quota imposed by j. The multinomial distribution is adjusted by excluding j from the 

set of possible destinations (choice set). Let 𝑅∗ denote the subset of destinations h for which 𝑛+ℎ
∗ ≤

ℎ. To determine the destination of an individual currently in i a random number is drawn from a 

multinomial distribution with parameters 𝑝𝑖ℎ
∗ =

𝑝𝑖ℎ

∑ 𝑝𝑖𝑚𝑚∈𝑅∗
 and ℎ ∈ 𝑅∗. An alternative approach is to 

replace 𝑝𝑖𝑗
0   by zero with j a region that reached its capacity constraint, and update the preferences 

such that ∑ 𝑝𝑖𝑗
0𝑟

𝑖=1 = 1. A number is drawn from the updated multinomial distribution and the 

procedure is repeated until each individual in the population is able to move to a region with 

vacancies. Note that the move is not to the initial preferred region of residence, but to another 

region that became a preferred region after the regions that reached their immigration quota are 

removed from the set of alternatives.   

Two remarks are in order. The first relates to the fairness of the procedure and the second to the 

extent to which the procedure reflects individual destination preferences.  

• The migration flows generated by this procedure depend on the order in which individuals 

are selected. If all individuals in a given origin are selected first, they do not face capacity 

constraints and their relocations at the end of procedure are fully determined by their 

location preferences. Individuals selected later in the procedure are much more likely not to 

be able to move to their preferred location because of capacity problems. The procedure is 

unfair because the sequence in which individuals are selected determines the probability of 

facing capacity constraints. To make the procedure fair, individuals are ordered randomly 

before the start of the procedure. In other words, a queue of individuals is constructed with 

positions in the queue determined at random. Random ordering makes that each 

individual is equally likely to be early in the queue. Every member of the population has 

the same probability to move to a destination in accordance with the given destination 

probabilities.  

• The procedure results in a migration flow matrix that satisfies the given marginals, but the 

flow is not necessarily the most probable flow given the marginal totals and the location 

preference matrix. The interaction between current region of residence (origin) and new 

region of residence (destination) is not necessarily identical to the dependence structure in 

the matrix of location preferences due to randomness. In other words, the individual 

actions may generate a flow matrix (macrosystem) that deviates from the one produced by 
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information gain minimization (KL method) and the iterative proportional fitting 

procedure. That is precisely what is observed in the application presented in subsection 4.4.  

4.4  Application 

The application consists of two steps. A first step is to construct a virtual population by assigning 

attributes to individuals. The second step is to simulate the migration behaviour  of individuals in 

the presence of immigration restrictions. The construction of a virtual population is described in 

Annex C. The result is a person data structure (data frame or person data file). This section 

concentrates on the simulation. The individual-level results of the simulation are added to the data 

frame. After completing the simulation, the individual data can be analyzed using methods 

developed for the analysis of sample surveys, with the remark that the variance is caused by the 

simulation (Monte Carlo variance) and not by observed differences between individuals. The 

individual data represent the microsystem in which each individual is uniquely identified. The 

macrosystem is described by count data presented in tabular form or contingency tables. 

In the absence of immigration restrictions (quota), individuals migrate to their preferred regions of 

residence. As a result, everyone is satisfied at the end of the interval (20). The number of residents 

of region i at t (2015) that resides in region j at t+1 (2020) is fully determined by the individual 

preferences and randomness. The individual location preferences are assumed to be consistent 

with the preferences revealed in the 1995-2000 migration flow. Table 4.1 shows the number of 

individuals in the virtual population by region of residence at t (2015) and region of residence at 

t+1 (2020) in the absence of immigration restrictions. The flow matrix is equal to the matrix 

obtained by multiplying the sample population by region of residence in 2015 and the preference 

matrix, except for small differences due to randomness associated with random sampling from the 

available contingency tables. The figures in Table 4.1 are comparable to the figures in Table 3.1 in 

Section 3, but two differences exist. First, the figures in Table 3.1 are population figures. They refer 

to the world population in 2015. The figures in Table 4.1 relate to a sample of the world 

population. Second, the figures in Table 3.1 are expected values, whereas the figures in Table 4.1 

are sample counts. They converge to the expected values when the sample size becomes very 

large. 

Table 4.1 Sample population in 2020, by region of residence in 2015, based on location 

preferences 
                     Region of residence in 2020 

Residence2015   EU+   USCan   LatAm  Africa    Asia    Rest     Sum 

  EU+         66330     267      77      94     191     167   67126 

  USCan         118   46094     268      14     176      18   46688 

  LatAm         116    1005   83300       1      26       2   84450 

  Africa        456     154       2  172064     136      24  172836 

  Asia          411     663      27      55  593488     571  595215 

  Rest          272      54       4       3     224   33128   33685 

  Sum         67703   48237   83678  172231  594241   33910 1000000 

 

Let’s introduce immigration quota. The quota is the difference between the sample population in 

2020 (the column totals in Table C.3) and the number of stayers based on location preferences 

(diagonal elements of Table 4.1). Table 4.2 summarizes the results obtained until now. The first 

columns show the sample population in 2015, present in 2020, and the sample population in 2020. 

The number satisfied in 2015, by region of residence, is shown in column 3. The next two columns 

show the number dissatisfied, first by region of residence in 2015 (dissat015) and next by region of 



54  

 

preference (dissatD15). Note that globally the proportion of the population that is dissatisfied with 

their current region of residence on 0.560 percent (5596/1000000), which is very similar to the 

expected value shown in table 3.2 (0.570 percent). The immigration quota are shown next. The 

number of individuals selected for immigration and admitted in their preferred region 

(nselectedD), is the either the number dissatisfied (dissatD15) or the immigration quota, whatever 

is lowest. The next columns show the number of individuals selected and not selected, by 

preferred region of residence. The last column indicates the size of the unfilled quota. Globally, 83 

percent of the applications for admission are accepted. Three regions do not reach their 

immigration quota as computed in this section: EU+, Latin America and the Caribbean, and Africa. 

Table 4.2 Summary of results: sample population 
        pop2015  pop2020  satisfied15  satsified19  dissatO15  dissatD15 quota  selectedD unfilledquota 

EU+       67127    67898        66288        66330        796       1373  1568       1373           195 

USCan     46688    47458        46083        46094        594       2143  1364       1364             0 

LatAm     84451    84115        83318        83300       1150        378   815        378           437 

Africa   172836   172538       172040       172064        772        167   474        167           307 

Asia     595212   594095       593442       593488       1727        753   607        607             0 

Rest      33686    33896        33131        33128        557        782   768        768             0 

Sum     1000000  1000000       994302       994404       5596       5596  5596       4657           939 

The admission probabilities are shown in Table 4.3. They are based on the number of dissatisfied 

people in the sample population. They differ slightly from those in Table 3.3 due to sample 

variation. Table 4.4 shows the number of individuals whose application for admission are 

accepted/rejected, by region of origin and preferred region of residence, sample population. 

Table 4.3  Admission probabilities in sample population 
        Preference 

IDc          EU+   USCan   LatAm  Africa    Asia    Rest 

  EU+    0.00000 0.12459 0.20370 0.56287 0.25365 0.21355 

  USCan  0.08594 0.00000 0.70899 0.08383 0.23373 0.02302 

  LatAm  0.08449 0.46897 0.00000 0.00599 0.03453 0.00256 

  Africa 0.33212 0.07186 0.00529 0.00000 0.18061 0.03069 

  Asia   0.29934 0.30938 0.07143 0.32934 0.00000 0.73018 

  Rest   0.19811 0.02520 0.01058 0.01796 0.29748 0.00000 

  Sum    1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

 

Individuals who are admitted in their preferred region of residence migrate to that region, while 

individuals whose application for admission is rejected stay in their initial region of residence (and 

remain dissatisfied with their place of residence). The distribution of the population by initial 

region of residence (2015), region of residence at the end of the procedure, and level of satisfaction 

at that time is shown in Table 4.5. Notice that 34 individuals in USACan are dissatisfied. The 

reason is that they were dissatisfied with USACan in 2015 and preferred to relocate to Asia, but 

their application was rejected (see Table 4.4, panel B).  

Table 4.6 shows the population by region in 2015 and 2020. The difference between the ‘observed’ 

sample population in 2020 in EU+ (67898) and the population predicted by the model (67840) is 58. 

It is the difference between the unfilled quota (195; Table 4.2) and the number of applications by 

EU+ residents in 2015 rejected (137; Table 4.5).  
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Table 4.4 Number of individuals whose application for admission are accepted/rejected, 

by region of origin and preferred region of residence, sample population.  
D. Application for admission granted 
             PreferredRegion 

CurrentRegion  EU+ USCan LatAm Africa Asia Rest  Sum 

       EU+       0   170    77     94  154  164  659 

       USCan   118     0   268     14  142   18  560 

       LatAm   116   640     0      1   21    2  780 

       Africa  456    98     2      0  110   24  690 

       Asia    411   422    27     55    0  561 1476 

       Rest    272    34     4      3  181    0  494 

       Sum    1373  1364   378    167  608  769 4659 

 

E. Application for admission rejected 
             PreferredRegion 

CurrentRegion EU+ USCan LatAm Africa Asia Rest Sum 

       EU+      0    97     0      0   37    3 137 

       USCan    0     0     0      0   34    0  34 

       LatAm    0   365     0      0    5    0 370 

       Africa   0    56     0      0   26    0  82 

       Asia     0   241     0      0    0   10 251 

       Rest     0    20     0      0   43    0  63 

       Sum      0   779     0      0  145   13 937 

 

F. Total applications for admission 
             PreferredRegion 

CurrentRegion  EU+ USCan LatAm Africa Asia Rest  Sum 

       EU+       0   267    77     94  191  167  796 

       USCan   118     0   268     14  176   18  594 

       LatAm   116  1005     0      1   26    2 1150 

       Africa  456   154     2      0  136   24  772 

       Asia    411   663    27     55    0  571 1727 

       Rest    272    54     4      3  224    0  557 

       Sum    1373  2143   378    167  753  782 5596 
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Table 4.5 Sample population by region of residence in 2015, region of residence in 2020, 

and level of satisfaction with their location in 2020 
A. Satisfied 

             CurrentRegion 

InitialRegion     EU+   USCan   LatAm  Africa    Asia    Rest     Sum 

       EU+      66330     170      77      94     154     164   66989 

       USCan      118   46094     268      14     142      18   46654 

       LatAm      116     640   83300       0      21       2   84079 

       Africa     456      98       2  172064     110      24  172754 

       Asia       411     422      27      55  593488     561  594964 

       Rest       272      34       4       3     181   33128   33622 

       Sum      67703   47458   83678  172230  594096   33897  999062 

 

B. Not satisfied 
               CurrentRegion 

InitialRegion     EU+   USCan   LatAm  Africa    Asia    Rest     Sum 

       EU+        137       0       0       0       0       0     137 

       USCan        0      34       0       0       0       0      34 

       LatAm        0       0     371       0       0       0     371 

       Africa       0       0       0      82       0       0      82 

       Asia         0       0       0       0     251       0     251 

       Rest         0       0       0       0       0      63      63 

       Sum        137      34     371      82     251      63     938 

C. Total 
               CurrentRegion 

InitialRegion     EU+   USCan   LatAm  Africa    Asia    Rest     Sum 

       EU+      66467     170      77      94     154     164   67126 

       USCan      118   46128     268      14     142      18   46688 

       LatAm      116     640   83671       0      21       2   84450 

       Africa     456      98       2  172146     110      24  172836 

       Asia       411     422      27      55  593739     561  595215 

       Rest       272      34       4       3     181   33191   33685 

       Sum      67840   47492   84049  172312  594347   33960 1000000 

 

Table 4.6 Population by region in 2015 and 2020 (in million) 

              Residence in 2020 

Residence2015   EU+ USCan LatAm Africa   Asia  Rest     Sum 

        EU+    66194   165   116    171    260   221   67127 

        USCan    178 45765   376     43    271    56   46688 

        LatAm    202   632 83589      2     17    10   84451 

        Africa   349   145     3 172196    126    17  172836 

        Asia     738   707    28    115 593178   447  595212 

        Rest     237    44     4     11    245 33145   33686 

        Sum    67898 47458 84115 172538 594095 33896 1000000 
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5 Conclusion and ways forward 

The paper presents an actor-based multilevel multiregional model. Individuals and governments 

are the actors. They interact directly and indirectly. Individuals have agency; they can act on their 

preferences. Preferences are based on the subjective utilities individuals attach to places. The 

concept of place utility is central in this paper. Individual actions are constrained by governments 

acting on behalf of nation states. Nation states restrict where individuals can settle. Restrictions are 

imposed on collective phenomena, more specifically on number of persons admitted to settle in a 

country in a given time interval. The cap on immigration and eligibility criteria, if any, restrict the 

freedom of movement. In the paper, restrictions are not personalized and do not target people 

with certain attributes. Chance determines who is entitled to move to the preferred place of 

residence and who is not. Most immigration restrictions, e.g. visa policies and residence permits, 

differentiate between individuals on the basis of personal attributes.  

Emigration decision making is a complex process in time and space. In this paper, the emphasis 

was on space. The time dimension was simplified significantly. Klabunde et al. (2017) and 

Willekens (2017) concentrate on the time dimension and disregard space (Willekens) or limit space 

(Klabunde et al.). Klabunde et al. simulate multi-stage emigration decision processeses embedded 

in the life course and in a historical context, i.e. in two time scales: age and calendar time. Stages of 

life and life events influence the stages of the decision process differently, and the influence varies 

in calendar time due to changes in the socio-economic and political context. The dependencies are 

estimated from migration survey data (Survey on Migration between Africa and Europe (MAFE), 

Beauchemin, 2018), augmented by census data and life history data from the Demographic and 

Health Survey. The migration decision model was implemented in NetLogo and the demographic 

events ware simulated in R, using the MicSim package (Zinn, 2014). Willekens (2017) approached 

the emigration decision process as a multistage stochastic process with competing risks, but did 

not embed the process in the life course. The age structure of emigration and ages-specific 

emigration rates are outcomes of the model. They are determined by ages at onset of the process 

and the rates of transition between stages. In both publications, the decision process being 

simulated is rooted in the theory of planned behaviour (Fishbein and Ajzen, 2010), in response to 

the frequent call in the agent-based modelling literature for more sound behavoural theories. The 

basic structure of the model is very similar to the ‘horse race’ random utility model (Marley and 

Colonius, 1992), which is an extension of the discrete choice random utility model and accounts for 

the time individuals take to accumulate and process evidence in favour of an alternative. The time, 

known as response time, deliberation time and decision time, is random and follows a waiting 

time distribution. A further extension of the model to incorporate space is likely to lead to the 

continuous-time random walk model (CTRW) discussed briefly in this paper.  

Migration flows between places of origin and places of destination are outcomes of individual 

decision processes and policies enacted by nation states. The modelling of the decision process is 

inspired by the Schelling (1971, 2006) model. Individuals assign utilities to alternative places of 

residence depending on how well place characteristics reflect subjective desires and aspirations. 

Place utilities are continuous random variables. The probability distribution of possible values 

determines the individual location preferences and ultimately the preferred place of residence. 

Individuals who are dissatisfied with their place of residence desire to move. In the Schelling 

model and in the model presented in this paper, capacity constraints limit the freedom of 

movement. In the Schelling model, capacity is measures as number of vacancies. In this paper, 

capacity is expressed as immigration quota. The restrictions limit an individual’s capability to 

achieve personal aspirations. The model may be approached as a particular operationalization of 
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the capability theory of Sen and Nussbaum incorporating the two basic clusters: individual quality 

of life and social justice. A system if considered fair if all eligible candidates have the same 

probability of being selected. Fairness is operationalized by a random selection of applicants. The 

model captures the basic features of the visa lottery systems that exist in some countries. 

Individuals who are not satisfied with their place of residence and are not able to act on their 

preferences may adapt their preferences and apply next time for admission in a country unfilled 

quota. This simple mechanism produces the substitution effects, which receive much attention in 

the literature and are viewed as unintended side effects of restrictive immigration policies. 

Individuals with applications for admission rejected are, however, also at risk of exploring 

alternative routes to make it to their preferred country of residence. Alternative routes, such as 

irregular migration, are beyond the scope of this paper, but the model’s open design and its 

modular structure offer an opportunity for add-ons.    

Migration is complex and uncertain. The model accounts for the uncertainties by approaching 

migration between places as an outcome of a stochastic process, more particularly a biased random 

walk with preferences and barriers. In essence, the random walk model is an individual-based 

spatial interaction model in which relocations are random, while the distribution of relocations 

and the position of actors at a point in time follow certain probability distributions. The model 

distinguishes population-level outcomes (macrosystem), which emphasize expected values, and 

individual-level outcomes (microsystem), which emphasize individual idiosyncrasy and 

variability (sample path). The challenge is to reduce the uncertainty in the estimates of migration by 

supplying relevant information. In the paper, two types of information on migration flows are 

distinguished. The first is information about the true flows. The information is usually not detailed 

but limited to aggregate data, e.g. total numbers of people by place of residence at two points in 

time. The second type is auxiliary information that is relatively detailed but is not directly about 

the true flow. It may consist of data on the distribution of location preferences or migration 

intentions in a population, on past migration flows, or on expert opinions or crowdsourced 

knowledge about migration flows. In the paper, individual location preferences revealed by past 

migration flows are used in the prediction process. When combining data from different sources, 

e.g. data on the true flows and auxiliary data, it is useful to measure the information content of 

each source of information and to determine the knowledge contributed by each piece of data. This 

is done by formulating the estimation problem as a mathematical programming problem, more 

particularly a constrained optimization problem. The knowledge about the true flow enters the 

optimization problem as constraints. The necessary knowledge not included in the constraints is 

retrieved from the auxiliary data. In this paper, the knowledge about the true flow is limited to the 

population distribution at time t and the immigration quota imposed during the period from t to 

t+1. Information on the dependence between origin and destination is derived from the revealed 

location preferences. It assumes that (a) individuals act on their preferences, but within the 

constraints imposed by governments and (b) location preferences are relatively stable. For testing 

the model and documenting the information transfer from input data to estimates, the number of 

stayers and the number of people in each region at t+1 are assumed to be known too.  

The analysis reveals, as expected, that (a) the degree at which individual preferences are reflected 

in the estimated migration flow depends on the constraints and (b) the accuracy of the estimates 

depends on how well the individual location preferences capture current associations between 

origin and destination. Because of the constraints, absolute location preferences are not relevant. 

Even the relative location preferences are in some cases not relevant. What matters are the ratios of 

relative location preferences, i.e. the relative location preferences of residents of region i divided by 

the relative location preferences of residents of region j. The ratio of relative location preferences is 
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an odds ratio. It means that, in the presence of immigration restrictions, the capacity of individuals 

to act on their preferences depends on the location preferences of other individuals in the system 

of regions. The collective constraints imposed by nation states affect everyone’s ability to act on 

individual preferences. An individual’s ability to act on preferences depends on other people’s 

actions. The individual freedom depends on the collective behaviour. The random mechanisms 

(lotteries) incorporated in the model ensure that everyone is affected equally by the restrictions 

imposed by governments or generated by the collective behaviour.  

In the paper, much emphasis was placed on the spatial dimension and on the consistency between 

the actor-based model and the spatial interaction models that are currently used to estimate 

migration flows from incomplete data. The spatial interaction models are given a statistical 

foundation showing the equivalence between the modelling of spatial interactions and the 

modelling of contingency tables and the decomposition of the effects of origin and destination into 

main effects and interaction effects through log-linear modelling. The main effects can be 

attributed mainly to the knowledge of the population at t and the immigration quota during the 

period from t to t+1. The interaction effects are ‘borrowed’ from the auxiliary data, in this case the 

revealed location preferences. The strategy to derive an actor-based model from established spatial 

interaction models has been successful. The parameters of the model are estimated from aggregate 

data by sampling contingency tables, a technique that is often used to produce individual data in 

the absence of micro data.  

For illustrative purposes, a system of six regions is considered and the migration flows between all 

countries of the world are aggregated into flows between six regions. The model may be applied to 

any system of regions, including a system consisting of all countries of the world. In such a system 

of regions, many flows are zero or practically zero. These zero values should be treated as sample 

zeros and not as structural zeros. The distinction between these two types of zeros in contingency 

tables is important because the estimation method preserves structural zeros, but does not (and 

should not) preserve sample zeros. The actor-based model may be extended in several ways: 

a. Personal attributes may be added, e.g. skill level (Willekens, 2017) and migration may be 

embedded in the individual life course to account for the impact of life events, such as 

changes in marital status, employment status and health status on desires and intentions to 

migrate (Klabunde et al., 2017). 

b. Actors may be given an opportunity to interact. They may form social, economic or 

political networks that influence future migration. Since in the paper country of birth and 

country of residence are included in the micro data on the virtual population, diaspora may 

be generated. If the life course perspective is adopted, kin and family networks (linked 

lives) may be constructed. They are particularly relevant in modelling transnational family 

formation and family reunion and the migrations they often trigger. Nation states may 

create political unions with freedom of movement internally and more restrictions on 

immigration from outside the union.  

c. Sample migration survey data may replace the sampling of probability distributions and 

contingency tables, which is only an intermediate step of empirically sound actor-based 

modelling and simulation. Cross-sectional surveys exist for some parts of the world and the 

Gallup World Poll is a worldwide survey covering more than 150 countries. A 

comprehensive actor-based model of migration not only benefits from data collection, but 

may also guide data collection, such as a world migration survey.  

d. Revealed location preferences may be replaced by stated preferences, intentions and 

aspirations. In the absence of reliable migration flow data, the use of intentions is 

particularly popular in forecasting (Tjaden et al., 2019). The predictive performance of 
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intentions is limited, however. Turning intentions into actions requires resources, financial 

and social, and the capability to remove obstacles. In the migration literature, ‘intention’ is 

often used as an umbrella concept without the specificity needed to test whether intentions 

are good predictors of actions (for a discussion, see Migali and Scipioni, 2019; Aslany et al., 

2021; Willekens, 2021). For decades, psychologists tried to unravel the link between 

intentions and actions. It motivated Ajzen (1985) to extend the Fishbein’s theory of 

reasoned action into the theory of planned behavior by distinguishing between individual 

beliefs about the capability to remove obstacles and the actual degree of control over 

behavioural outcomes. For a discussion on why intention is often a poor predictor of 

behavior, see Ajzen (2020, pp. 320ff). Tjaden et al. (2019) test the link between intentions 

and behaviour using six consecutive years in the Gallup World Poll between 2010 and 2015. 

They found “a strong association between emigration intensions and recorded bilateral 

flows” (p. 36 and 43). Migali and Scipioni (2019), analyzing the same data, are less positive 

about the predictive performance of intentions and suggest not to rely on intentions but use 

information instead on whether individuals are past the intention stage (and the planning 

stage) and are actually preparing for migration. They conclude that “However, and 

especially for policymakers, this article suggests that the preparation for migration is the 

aspect where most of the attention should be focused if the research intention is to capture 

future migrants.” The recommendation is consistent with the process perspective on 

emigration decision making. Decision is a staging process that takes time. Each stage is 

affected by many factors, personal and contextual. Early stages of the decision process, e.g. 

the attitude and the intention stages, have limited predictive power because individuals are 

unable to predict all possible intervening factors. The predictive power increases in later 

stages of the decision process because the intervening factors are more predictable. 

Klabunde et al. (2017) simulate the transition from attitude to intention to planning to 

preparation accounting for some important intervening factors. Discussions on the 

predictive performance of intentions and discussions in economics on stated versus 

revealed preferences motivated, for this paper, the choice for revealed preferences.  

e. In the model presented in the paper, time is omitted or is discrete. Most decision-making 

processes take time, in particular when they lead to life choices that affect the entire 

remaining life course. Decision making also consists of stages (Willekens, 2021). An 

extension of the model should reflect the process character of decision making, distinguish 

between stages, and should allow for individual differences in the pace of decision making. 

Klabunde et al. (2017) and Willekens (2017) use a process theory of planned behaviour and 

waiting time distributions to model durations of stages. The features can be integrated into 

a continuous-time random walk.  

f. The model in this paper is essentially a logit model or multinomial logistic regression 

model (with one explanatory variable: region of current residence) for reasons described in 

the paper. It predicts the probability that an individual who resides in i at t resides in j at 

t+1. It does not predict migration counts. In order to predict migration counts during a 

given period, the logit model should be replaced by a counting process model in 

continuous time. Unlike in the logit model, a counting process model allows for multiple 

events during a time interval. It relates each occurrence to an appropriate exposure time. The 

simplest counting process is the Poisson process. The Poisson regression model is widely 

used in migration research (e.g. Raymer et al., 2013).  

g. The multilevel model with individuals and governments as the actors, has, by design, an 

important policy component. As demonstrated in the paper, the model could relatively 

easily be extended to a migration policy model. Since individuals respond to policies, 
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frequently in unforeseen ways, the model could shed light on unintended consequences of 

policies and their impact on the effectiveness of policies. The extension of the model to a 

full policy model and more particularly a strategic foresight model for forward-looking 

governance requires long-term objectives and short-term decisions and actions that are 

consistent with long-term objectives (European Commission, 2020). Migration policy 

models with strategic foresight are not new. They were developed at a time of rapid 

urbanization and governments aimed at using internal migration as a policy instrument to 

achieve a more balanced population distribution across its territory (Willekens, 1979). The 

policy model developed at that time is essentially a forecasting model turned into an 

optimization model. It includes target variables, e.g. desired end states, and control 

variables representing policy actions. The model determines the future trajectory of actions 

needed to reach long-term objectives. What the model did not consider was how the actors 

involved would respond to policy measures. Most policies were only partly effective 

because many actors responded not as policy-makers expected them to respond. The belief 

in the makeable society and central planning was severely affected. Agent-based models, 

such as the Schelling model, demonstrated the limited impact of centralized coordination 

mechanisms.  

h. If the number of spatial units is large, a network approach may be preferred over a 

multiregional approach because a network approach is able to reveal interesting structural 

characteristics of migration networks (Abel et al., 2021; Nagurney and Daniele, 2021). Since 

network analysis makes intensive use of matrix calculus, the matrix formulations of 

multiregional models (see Sections 2 and 3) remain valid in network analysis. 

Migration is complex and uncertain because of the many actors involved and the decisions actors 

must make in the absence of complete information and while facing many uncertainties. Multi-

actor models help unravel the complexities and information theory help master uncertainties.  
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Wiśniowski, A. (2017). Combining labour force survey data to estimate migration flows: the case of 

migration from Poland to the UK. Journal of the Royal Statistical Society A, 180(1):185-202. Doi: 

10.1111/rssa.12189 

Wolpert, J. (1965). Behavioral aspects of the decision to migrate. Papers of the Regional Science 

Association, 15:159-169. DOI: 10.1007/BF01947871 

Yaméogo, B.F., P. Gasteneau, P. Hancack and P.-O. Vandanjon (2021). Comparing methods for 

generating a two-layered synthetic population. Transportation Research Record, 2675(1):136-147. Doi: 

10.1177/0361198120964734  

Yasuda, N. (1975). The random walk model of human migration. Theoretical Population Biology, 

7:156-167. Doi: 10.1016/0040-5809(75)90011-8 

Ye, P., X. Hu, Y. Yuan and F.-Y. Wang (2017). Population synthesis based on joint distribution 

inference without disaggregate samples. Journal of a-Artificial Societies and Social Simulation. 

20(4):16. Doi: 10.18564/jasss.3533  

Ye, P. and X. Wang (2018). Population synthesis using discrete copulas. Proc. IEEE Int. Conf. Intell. 

Transport. Syst. (ITSC), 2018, pp. 479–484  In: 21st International Conference on Intelligent 

Transportation Systems (ITSC). Doi: 10.1109/ITSC.2018.8570021   

Zaloznik, M. (2011). Iterative proportional fitting. Theoretical synthesis and practical limitations. 

PhD Thesis, University of Liverpool. Available at 

http://www.researchgate.net/publication/262258986 

Zinn, S. (2014). Package MicSim. Performing continuous-time microsimulation. Published on 

CRAN. https://cran.r-project.org/web/packages/MicSim/index.html 

Zwanzig, R. (1983). From classical dynamics to continuous time random walks. Journal of 

Simulation Physics, 30(2):255-262. Doi: 10.1007/BF01012300  

Annex A Entropy maximization of univariate distribution 

Consider a discrete random variable X with an unknown probability mass function 𝑝𝑋(𝑥). What is 

the most probable probability mass function? If all we know about the distribution is that 

∑ 𝑝𝑋(𝑥) = 1𝑥 , entropy maximization tells us that the most probable distribution is the uniform 

distribution. This example is simple but has all the ingredients of any entropy maximization. The 

problem is to find the most probable distribution 𝑝𝑋(𝑥) that meets the condition imposed on the 

distribution and does not introduce any assumption on the type or shape of the distribution.  

The most probable values of 𝑝𝑋(𝑥) are obtained by solving the following mathematical 

programming problem:  

maximize H[𝑝𝑋(𝑥)] =−∑ 𝑝𝑋(𝑥) 𝑙𝑛 𝑝𝑋(𝑥)
𝑥𝜖𝑅

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑝𝑋(𝑥) = 1
𝑥𝜖𝑅

(𝐴. 1) 

Notice that H[𝑝𝑋(𝑥)] is a positive value because the logarithm of a probability is negative. The 

common approach is to replace this constrained mathematical programming problem by an 

http://dx.doi.org/10.1111/rssa.12189
https://doi.org/10.1016/0040-5809(75)90011-8
https://doi.org/10.1109/ITSC.2018.8570021
http://www.researchgate.net/publication/262258986
https://cran.r-project.org/web/packages/MicSim/index.html
https://ui.adsabs.harvard.edu/link_gateway/1983JSP....30..255Z/doi:10.1007/BF01012300
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equivalent problem without the constraint. In mathematical programming, the original problem 

with the constraint is known as the primal problem and the equivalent problem without the 

constraint as the dual problem. The primal and the dual represent two different perspectives on the 

same problem. The dual is obtained by adding the constraint to the objective function. That 

requires an indicator of the change in the objective function if the constraint is not met or relaxed. 

It is the price to pay by not meeting the constraint. The indicator is the Lagrange multiplier. The 

unconstrained function to be maximized is the Lagrangian function: 

𝐿(𝑝𝑋(𝑥), 𝜆) = −∑ 𝑝𝑋(𝑥) 𝑙𝑛 𝑝𝑋(𝑥)
𝑥𝜖𝑅

+ 𝜆 [∑ 𝑝𝑋(𝑥) − 1
𝑥𝜖𝑅

] (𝐴. 2) 

where  is the Lagrange multiplier. The values of 𝑝𝑋(𝑥) and the Lagrange multiplier that maximize 

𝐿(𝑝𝑋(𝑥), 𝜆) must be determined. Since the function reaches a maximum when the slope is zero, the 

first-order conditions are12 

𝜕𝐿

𝜕𝑝𝑋(𝑥)
= −(ln 𝑝𝑋(𝑥) + 1) + 𝜆 = 0 

𝜕𝐿

𝜕𝜆
= ∑ 𝑝𝑋(𝑥) − 1

𝑥𝜖𝑅
 

Hence 𝑝𝑋(𝑥) = 𝑒𝑥𝑝[𝜆 − 1] with ∑ 𝑝𝑋(𝑥) = 1𝑥 . The probability is the same for all possible values of 

the random variable X. Since these probabilities must add to one, the probabilities are 𝑝𝑋(𝑥) = 1/𝑟. 

Hence the maximum entropy distribution with a single constraint that all probabilities add to one 

is the uniform distribution. In other words, if all we know about the probability distribution to be 

estimated is that the probabilities must add to one, then  the distribution that maximizes the 

entropy and satisfies the principle of indifference is the uniform distribution. The distribution is 

determined entirely by the information constraint and considers no other knowledge. The 

distribution is maximally uncertain (information content is the lowest possible). The entropy of the 

distribution is ln 𝑟, with r the cardinality of X. The Lagrange multiplier is 𝜆 = 1 + ln (
1

𝑟
) = 1 − ln 𝑟.  

Annex B Data preparation 

Introduction 

The main source of data used in this paper is the United Nations. The study of international 

migration suffers from a lack of comparable data. To arrive at comparable data and harmonized 

data collection procedures, the United Nations (1998) published recommendations on statistics of 

international migration. Many countries followed the recommendations, but several did not. The 

United Nations is currently in the process of updating the guidelines. As part of that endeavour, 

an Expert Group on Migration Statistics was established. The Expert Group developed an 

overarching conceptual framework on statistics on international migration and mobility and 

proposed a set of definitions to guide de collection and harmonization of migration statistics 

(United Nations, 2021). In Section B.2 the framework is briefly described. It is helpful to describe 

the data types used in this paper.  

The study of international migration suffers from the lack of comparable data. The United Nations 

recommendations on statistics of international migration aim at comparable and harmonized 

 

12 The derivative of x ln(ax) is ln(ax)+1 
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statistics (1998, 2021). The framework proposed by the United Nations, revised in 2021, is used to 

guide the documentation of the data used in this paper. 

The term ‘countries’ is used to denote countries and independent territories (see Section B.3). 

International organizations, such as the United Nations and the European Commission, use 

different codes to denote countries. The list of units varies between organizations and sometimes 

also between publications of the same organization. Section B.3 briefly discusses peculiarities of 

lists and codes used in international migration statistics.  

The population data used in this paper are presented in Section B.4. They are from the 2019 

Revision of World Population Prospects (United Nations, 201913). The data are used to estimate the 

number of individuals who never left their country or territory of birth and the estimate the 

number of persons with current residence the equal to the residence five years ago. These stayers 

are omitted in the United Nations’ migrant stock data. Section B.5 covers the two sources of the 

migration data. The first is the United Nations (2019)’ estimates of migrant stocks by country or 

territory of current residence and country of birth (or nationality). The second source provides 

data on five-year bilateral flows between countries, which are referred to as ‘recent migration’. The 

estimates are produced by Abel and Cohen (2019). To illustrate the methods presented in this 

paper, countries are aggregated into six regions. The data for the system of six regions are 

presented in Section B.6.  

Framework on international migration and mobility statistics 

The framework distinguishes between resident population and temporary (non-resident) 

population. International migration is all border crossings related to changes in the resident 

population. A border crossing that does not change the resident population is international 

temporary mobility. Migration is therefore a change in the resident population. One aim of the 

framework is to resolve the current misalignment between flows of international migration and 

stocks of immigrant populations. “Migration flows generally include all persons immigrating or 

emigrating to or from a country. Immigrant populations are measured primarily using information 

on country of birth, without reference to the duration of stay and excluding those who have 

migrated previously but returned to their country of birth. Without this alignment, there are 

critical gaps in the evidence base for national policymakers” (United Nations, 2021, p. 7). The 

framework should be valid irrespective of the concept of resident population used. The UN 

recommends to define a resident as a person who stays in a country for a duration that exceeds a 

minimum threshold (ideally 6 or 12 months). According to the United Nations, the resident 

population should be disaggregated by both birthplace and by citizenship. The conceptual 

framework is shown in Figure B.1. 

 

 

 

 

 

13 Update in United Nations (2020). 
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Figure B.1 Conceptual framework on international migration and the coherence between 

flows and stocks  

 
Source: United Nations (2021, p. 10) https://unstats.un.org/unsd/statcom/52nd-

session/documents/2021-11-MigrationStats-E.pdf    

 

Changes in stock of migrants are determined by migration flows. Flows measure changes in 

country of residence. A change in place of residence is an event. However, data on events are 

frequently not comparable because differences in time frame. Ideally, events that can occur at any 

time are recorded in continuous time. Migration is such an event. Continuous observation and 

reporting is not feasible. It is approximated in a national registration system, e.g. a population 

register. The common approach is to measure changes of residence by comparing places of 

residence at two points in time. Such data are referred to as transition data to distinguish them from 

event data, also known as movement data (Rees and Willekens, 1986). The event concept emphasizes 

the occurrence. A migration is an event. The transition concept emphasizes the person who has 

experienced an event. The person’s place of residence at one point in time differs from the place of 

residence at a previous point in time. A transition is measured by comparing a personal attribute, 

e.g. place of residence, at two points in time. A transition is a consequence of the occurrence of an 

event. Transition data are collected in censuses and sample surveys, in which persons are asked 

about their current place of residence and the place of residence at a previous point in time. The 

previous point in time may be fixed for every respondent, e.g. five years prior to the census, or 

vary between respondents, e.g. date of birth. The indirect measurement of migration by comparing 

the current place of residence and the place of birth gives information on lifetime migration (at least 

one migration in a lifetime up to the current age). The indirect measurement of migration by 

comparing the current place of residence and the place of residence one or five years ago gives 

information on recent migration. The number of transitions recorded or estimated depend on the 

length of the interval considered. In addition, transition-based definitions of migration undercount 

the total number of migrations (moves) during the period considered. Statistical techniques have 

been developed to harmonize data collecting using different time frames. The key idea is to 

estimate a latent true relocation rate. The approach is proposed by Nowok (2010), who adopts a 

probabilistic framework and uses simulation because analytical solutions do generally not exist 

(see also Nowok and Willekens, 2011). Raymer et al. (2013) and Wiśniowski (2017) adopt a 

Bayesian framework to estimate the latent migration rate. Del Fava et al. (2019) combine the two 

approaches and extend it using more data. 

https://unstats.un.org/unsd/statcom/52nd-session/documents/2021-11-MigrationStats-E.pdf
https://unstats.un.org/unsd/statcom/52nd-session/documents/2021-11-MigrationStats-E.pdf
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Countries, areas or territories, and groups of countries 

The data sources used in this paper differ slightly in the list of countries and territories for which 

observations and estimates are presented. In addition, no unique country codes exist. To be able to 

merge the data from the different sources, a single set of unique codes was prepared. The 

preparation of the list is documented in this section. The unique country codes form the basis for 

flexible grouping of countries.  

The world consists of 252 countries, independent territories and special areas of geographical 

interest. 193 are member states of the United Nations and two countries have observer status (Holy 

See and State of Palestine). Western Sahara is listed by the UN as a “non-self-governing body”. 

Kosovo is not a member of the UN since the UN has not recognized Kosovo as an independent 

state.  

The United Nations’ Standard Country or Area Codes for Statistical Use identifies countries and 

territories by three-digit numerical codes. The codes were initially published by the UN Statistics 

Division as Series M, No. 49 and are now commonly referred to as the M49 standard. The codes are 

available online (UNSD-Methodology.csv, available at 

https://unstats.un.org/unsd/methodology/m49/overview/). A total of 249 countries and territories 

are included in the list. The information provided by the UNSD for each country/territory is shown 

in Table B.1. 

In addition, countries have a three-digit alphabetical code (letter code) and a two-digit alphabetical 

code assigned by the International Organization for Standardization (ISO): ISO 3166-1 alpha-3 and 

ISO 3166-1 alpha-2. The latest version is available online at 

http://www.iso.org/iso/home/standards/country_codes.htm. The official names of countries are 

available at the UNTERM website at http://unterm.un.org. 

No unique list of countries and no unique country codes exist. Organizations use different lists of 

countries and country codes. For instance, the European Commission and Eurostat generally uses 

ISO 3166-1 alpha-2 codes with two exceptions: EL is used to represent Greece, not GRC and GR 

that is used by the UN, and UK is used to represent the United Kingdom, not GBR and GB used by 

the UN. The codes used by Eurostat are online at 

https://rdrr.io/cran/eurostat/man/harmonize_country_code.html 

Some data published by the United Nations are not available at country level, but are available for 

groups of countries. The United Nations groups countries into five geopolitical regional groups: 

African Group, Asia and Pacific Group, Eastern European Group, Latin American and Caribbean 

Group (GRULAC), and Western European and Others Group (WEOG). Cyprus, an EU member 

state, is neither a member of WEOG or the Eastern European Group. Due to its geographical 

location and close ties with Russia, Cyprus decided to remain neutral between the two European 

Groups and thus is a member of the Asia and the Pacific Group. The United Nations uses numeric 

location codes for areas of the world. In these codes, the United Nations makes a distinction 

between UN code and location code. Location codes are used in the world population prospects 

and the migrant stock data. The UN code for the world is 001, while the location code is 900. The 

UN code for Europe is 150 and the location code is 908. The country/area codes in M49 are the UN 

codes. The codes for the world and groups of countries are the UN codes (001 for the World, 002 

for Africa, etc.). The location codes of countries and independent territories are the same as the UN 

codes used in M49. These codes are less than 900. Location codes of 900 and higher are reserved for 

the world and groups of countries.  

 

https://unstats.un.org/unsd/methodology/m49/overview/
http://www.iso.org/iso/home/standards/country_codes.htm
http://unterm.un.org/
https://rdrr.io/cran/eurostat/man/harmonize_country_code.html
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Table B.1 Standard country and area codes for statistical use (M49) 

 [1] "Global.Code"                             

 [2] "Global.Name"                             

 [3] "Region.Code"                             

 [4] "Region.Name"                             

 [5] "Sub.region.Code"                         

 [6] "Sub.region.Name"                         

 [7] "Intermediate.Region.Code"                

 [8] "Intermediate.Region.Name"                

 [9] "Country.or.Area"                         

[10] "M49.Code"       (changed into M49)                                       

[11] "ISO.alpha2.Code"         (changed into ISO.alpha2)                  

[12] "ISO.alpha3.Code"         (changed into ISO.alpha3)                       

[13] "Least.Developed.Countries..LDC."      (changed into LDC) 

[14] "Land.Locked.Developing.Countries..LLDC."  (changed into LLDC) 

[15] "Small.Island.Developing.States..SIDS."  (changed into SIDS) 

[16] "Developed...Developing.Countries" (changed into Developed_Developing) 

  

Source: UNSD  https://unstats.un.org/unsd/methodology/m49/overview/ 

 

The list of countries changes periodically due to the formation of new countries. For example, 

Sudan (SDN) included South Sudan, which was founded in 2011 and received the country code 

(SSD). In that year, the numeric code of Sudan was also changed. Codes are dynamic too. For 

changes in ISO codes, see https://www.iso.org/iso-3166-country-codes.html and 

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3. Statistics Canada prepared an overview of 

current and historical countries and areas of interest (see 

https://www.statcan.gc.ca/en/subjects/standard/sccai/2011/scountry-desc). In 2006, Serbia and 

Montenegro (SCG) was divided into Serbia (SRB) and Montenegro (MNE). In 2008, Serbia was 

divided into Serbia (SRB) and Kosovo (XKO).  

County names change too. In 1989, Burma (BUR) changed into Myanmar (MMR) and in 2009 back 

to Burma. The UNSD code is Myanmar (MMR).  

Table B.2 shows the list of countries and areas and their identifications. The identifications form 

the basis for flexible grouping countries. In the list, the United Kingdom of Great Britain and 

Northern Ireland (official name) is replaced by United Kingdom. United Kingdom includes 

Scotland, Wales, England and Northern Ireland, and excludes Isle of Man (IMN), the Channel 

Islands (CHI) [Guernsey (GGY) and Jersey (JEY); until 2011, Sark (XSQ) was part of Guernsey] and 

British Overseas Territories. Some countries/areas are included in the list, but not included in the 

United Nations list of 249 countries/areas. They are: 

• China, Taiwan Province of China (TWN) 

• Channel Islands (CHI) 

• Sudan before 2011 (SUD) 

• Serbia and Montenegro (SCG) 

The countries and territories are added because some UN data include these countries/areas. This 

brings the total to more than 252 countries/areas.  

 

https://unstats.un.org/unsd/methodology/m49/overview/
https://www.iso.org/iso-3166-country-codes.html
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
https://www.statcan.gc.ca/en/subjects/standard/sccai/2011/scountry-desc
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A function was developed in R to produce different groups of these countries/areas. One 

aggregation is into six regions. That aggregation is used in this paper. 

Population data 

Official population estimates and projections are prepared by the Population Division of the 

Department of Economic and Social Affairs of the United Nations Secretariat. For this paper data 

are obtained from the 2019 Revision of World Population Prospects (wpp2019). Population estimates 

are given for 201 countries and territories, and 48 groups of countries/areas (total 249) from 1950 to 

2020 (5-year intervals). The areas are (United Nations, 2019): 

• World (1) 

• Regions (5): Africa, Americas, Asia, Europe, Oceania 

• Subregions (18): "Northern Africa" ,"Sub-Saharan Africa”, "Latin America and the 

Caribbean", "Northern America", "Central Asia", "Eastern Asia”, "South-eastern Asia”, 

"Southern Asia”, "Western Asia", "Eastern Europe", "Northern Europe" , "Southern 

Europe”, "Western Europe", "Australia and New Zealand", "Melanesia", "Micronesia", 

"Polynesia"    

• Intermediate regions (9): "Eastern Africa", "Middle Africa", "Southern Africa" "Western 

Africa"  "Caribbean", "Central America" "South America"   "Channel Islands" 

 

The data are available online at https://population.un.org/wpp/ 14. They can also be accessed via 

the data query https://population.un.org/wpp/dataquery/. The data are also available as the 

wpp2019 package in the Comprehensive R Archive Network (CRAN) (https://cran.r-

project.org/web/packages/wpp2019/index.html). In wpp2019, Channel Islands is included, but not 

the territories that form the Channel Islands. Taiwan (TWN) is included as “China, Taiwan 

Province of China”. Notice that the population for mid-2020 is a projected population.  

Migrant data 

a. Migrant stock data 

The UN migrant stock data presents estimates of international migrants by age, sex, country and 

area of birth and country and area of current residence for the years 1990, 1995, 2000, 2005, 2010, 

2015 and 2020. An update was published in 2020. The estimates are prepared by the UN 

Population Division and based on official statistics on the foreign-born population (if country of 

birth is given). If the country or territory of birth is unknown, the UN uses nationality. If neither 

country/area of birth or nationality is known, then migrants are counted in the resident population 

with place of birth and nationality unknown. Refugee data are included if available. The 2020 

migrant stock estimates cover 232 countries and territories, and 45 groups of countries. The names 

and composition of geographical areas follow those presented in “Standard country or area codes 

 

14 See also the wppExplorer, which Allows to interactively explore data from the World Population Prospects, 

contained in packages wpp2019, wpp2017, wpp2015, wpp2012 and wpp2010. It is based on the shiny package. 

https://cran.r-project.org/web/packages/wppExplorer/wppExplorer.pdf  

 

 

https://population.un.org/wpp/
https://population.un.org/wpp/dataquery/
https://cran.r-project.org/web/packages/wpp2019/index.html
https://cran.r-project.org/web/packages/wpp2019/index.html
https://cran.r-project.org/web/packages/wppExplorer/wppExplorer.pdf
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for statistical use” (ST/ESA/STAT/SER.M/49/Rev.3), available at 

http://unstats.un.org/unsd/methods/m49/m49.htm 

The 2019 data are available online at 

https://www.un.org/en/development/desa/population/migration/data/estimates2/estimates19.asp. 

In December 2020, an update of the 2019 data was published (IMS2020). The update includes 

migrant stock data for mid-2020.  

The United Nations estimated the number of international migrants (stock) worldwide at 281 

million in mid-2020, up from 248 in 2015. For a considerable number of immigrants, the place of 

birth is not known. The UN estimates whether the origin is in the South or the North and provides 

the estimates under area labels “Other South” and “Other North”. The world population and the 

sizes of the migrant stocks in the world are shown in Table B.3. M_stockUN is the total migrant 

stock and M_stock is the migrant stock excluding “Other South” and “Other North”. The latter 

figures are used in this paper.  

For this paper, the total international migrant stock data of 2019 are used. 

b. Migrant transition data 

Abel and Cohen (2019) estimate migration between 202 countries/areas. The estimates are for five 

five-year periods from mid-year (July 1) 1990 to mid-year (June 30) 2015. The estimates were 

updated in 2021, using the most recent International Migrant Stock (IMS2020) data made available 

by the United Nations, and the most recent World Population Prospects (WPP2019). In addition, 

the time series of data was extended to 2015-20. The most recent estimates, including the period 

2015-20, are used in this paper.  

The countries/areas include in the estimates differ slightly from those listed by the UN. For 

instance, the authors include the Channel Islands, but not the separate territories the UN considers 

(Jersey, Guernsey and Sark, which is in fact part of Guernsey).  

Abel and Cohen review and validate six methods recently proposed to estimate recent bilateral 

migration flows from migrant stock data published by the UN. Bilateral migration data are 

presented in square contingency tables. The off-diagonal entries contain the migration stocks or 

flows, depending on the estimates used. The diagonal entries contain the number of native-born 

residents (stock data) or number of individuals who did not migrate (stayers) or migrated within a 

country or area. In the assessment, intra-country migration is zero. Validation was done by 

comparing the estimated produces with reported data where possible. Recall that transition data 

measure recent changes in residence for persons present at the end and at the beginning of the 

interval. Since birth and deaths during the interval affect the number of transitions, Abel and 

Cohen introduce estimates of births and deaths. 

Abel and Cohen (2019) apply multiple methods for estimating migration flows from stocks to 

produce estimates of the bilateral international migration flows between all pairs of 200 countries 

for five five-year periods from mid-year (July 1) 1990 to mid-year (June 30) 2015, using the set of 

bilateral migration stocks published by the United Nations. Migration estimates for 2015-19 are not 

included in the 2019 paper. The authors found that the two methods that use a demographic 

accounting approach perform consistently better than the four other estimation approaches. The 

accounting method frames changes in migrant stocks as residuals in a global demographic account 

(Abel, 2013). Migration flows are estimated to match increases or decreases in the reported 

http://unstats.un.org/unsd/methods/m49/m49.htm
https://www.un.org/en/development/desa/population/migration/data/estimates2/estimates19.asp
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bilateral stocks of migrants, and births and deaths during the period. Of the 232 countries in the 

UN migrant stock database only 200 had complete estimates of other demographic measures such 

as births and deaths. They are considered by Abel and Cohen. All of the 32 excluded countries had 

populations below 100,000. The reported data used to validate the estimation methods are 

immigration, emigration and net migration flows and population data. All these data are reported 

by the United Nations Population Division (UNPD). The UNPD adjusted data to include available 

refugee statistics. The flow data collected and reported by the UN are for single years, whereas 

Abel and Cohen estimate flows over a 5-year period. To approximate 5-year flows, they multiplied 

the average annual flows by five. The UNPD and the authors’ net migration data represent 

migrant transitions (based on migrants’ location at the beginning and end of the 5-year interval) 

rather than the number of moves during the interval. Hence, migration to third countries and 

return moves during an interval are not accounted for.  

The validation exercise revealed that estimates based on Azose and Raftery (2019) method agree 

better with the available data than the estimates produced by the other five methods. In 2021, the 

authors updated the estimates of directional migration flows using the newly published 

International Migrant Stock (IMS2020) data inputs by the United Nations, the most recent World 

Population Prospects (WPP2019), while accounting for new countries added recently. The 

estimates are available on Figshare 

(https://figshare.com/articles/dataset/Bilateral_international_migration_flow_estimates_for_200_co

untries_1990-1995_to_2010-

2015_/7731233?backTo=/collections/Bilateral_international_migration_flow_estimates_for_200_cou

ntries/4470464). They are referred to as Abel and Cohen (2021). 

Table B.3 shows the sizes of migrant stocks and 5-year transitions for different years/periods. The 

population for 2020 is the projected population (wpp2019).  

Table B.3 Population, migrant stocks and 5-year transitions (millions) 
     Population M_stockUN M_stock namperiods 5yr-transitions 

1990       5306       153     144    1990-95        69.593 

1995       5722       161     153    1995-00        67.011 

2000       6121       173     166    2000-05        75.851 

2005       6518       191     183    2005-10        87.091 

2010       6933       220     212    2010-15        93.049 

2015       7355       248     237    2015-20        95.864 

2020       7770       281     260                        

Source: United Nations wpp2019 (columns 1-4) and Abel and Cohen 
(2021) (columns 5-6) 

System of six regions 

The United Nations groups countries into different types of regions (see Table B.2). For the 

presentation of the model, the world is viewed as a system of six regions. The regions are: 

a. EU+ (EU_EFTA_UK): (32 countries/areas): 27 member states of the European Union, plus 

the 4 countries of European Free Trade Association (EFTA) (Iceland, Liechtenstein, Norway 

and Switzerland), and the United Kingdom. Countries are identified by their three-digit 

numerical codes:  

i. EU: "040","056","100","191","196","203", 

"208","233","246","250","276","300","348","372","380","428","440","442","470","528","61

6","620","642","703","705","724","752" 

https://figshare.com/articles/dataset/Bilateral_international_migration_flow_estimates_for_200_countries_1990-1995_to_2010-2015_/7731233?backTo=/collections/Bilateral_international_migration_flow_estimates_for_200_countries/4470464
https://figshare.com/articles/dataset/Bilateral_international_migration_flow_estimates_for_200_countries_1990-1995_to_2010-2015_/7731233?backTo=/collections/Bilateral_international_migration_flow_estimates_for_200_countries/4470464
https://figshare.com/articles/dataset/Bilateral_international_migration_flow_estimates_for_200_countries_1990-1995_to_2010-2015_/7731233?backTo=/collections/Bilateral_international_migration_flow_estimates_for_200_countries/4470464
https://figshare.com/articles/dataset/Bilateral_international_migration_flow_estimates_for_200_countries_1990-1995_to_2010-2015_/7731233?backTo=/collections/Bilateral_international_migration_flow_estimates_for_200_countries/4470464
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ii. EFTA: "352","578","438","756" 

iii. UK: "826" 

b. USCan: United States of America (“840”) and Canada (“124”) 

c. Latin America and the Caribbean: the subregion of countries defined by the UNSD (see 

Table B.2) (52 countries/areas). 

d. Africa: the region of countries defined by the UNSD (see Table 1) 

e. Asia: the region of countries defined by the UNSD (see Table B.2), except Cyprus. Cyprus is 

included in EU+. The region consists of 50 countries/areas.  

f. Rest of the world (56 countries/areas): all countries/areas included in list produced by the 

UNSD (Table B.2), that are not included in (a)-(e).  

Note that Channel Islands (Jersey, Guernsey) (British Crown Dependencies of the French coast of 

Normandy), which are included in the Abel-Cohen study, are included in the category “Rest of the 

world”. Isle of Man (self-governing British Crown Dependency) and Svalbard and Jan Mayen 

Islands (jurisdiction of Norway),which are included in the UNSD list of countries/areas, are not 

considered by Abel and Cohen. 

Table B.4 shows the population of the six regions. They are obtained by aggregation of the data 

provided in the 2019 Revision of World Population Prospects. 

Table B.5 shows migrant stock data. The off-diagonal elements show the number of people (in 

thousand) by region of birth (origin) and region of residence (destination) in the year indicated 

(year 2000 and 2020). The diagonal entries indicate the number of people (in thousand) born in a 

region and residing in the same region but in a different country of that region in the year 

indicated. The intra-regional lifetime migration as a proportion of the total lifetime migration in a 

period is 48.05 percent in 2000 and 50.81 percent in 2020.  

Table B.4 Population in six regions of the world, 1990-2020 (millions) 

                               Year 

Region           1990     1995     2000     2005     2010     2015     2020 

  EU_EFTA_UK  487.810  494.428  497.705  506.818  515.894  522.383  527.554 

  USCan       279.662  294.328  312.299  327.158  343.159  356.905  368.745 

  LatAm       442.574  482.735  521.537  557.172  590.992  623.553  653.561 

  Africa      630.343  717.264  810.978  916.149 1039.299 1182.433 1340.592 

  Asia       3204.854 3470.876 3718.354 3954.253 4185.294 4408.757 4616.031 

  Rest        260.619  262.289  259.666  256.601  257.912  261.103  263.366 

  Sum        5305.862 5721.920 6120.540 6518.151 6932.549 7355.133 7769.849 

Source: United Nations Population Division, wpp2019  

 

Table B.5 Immigrant stock in 2020 by region of birth (millions) 
Region               Region of residence in 2020 

Of birth      EU+  USCan  LatAm Africa   Asia   Rest     Sum 

  EU+      23.952  5.750  1.376  0.864  2.006  3.781  37.730 

  USCan     1.065  1.095  1.231  0.067  0.509  0.241   4.207 

  LatAm     4.898 25.911  8.107  0.036  0.424  0.205  39.581 

  Africa   10.576  2.871  0.038 21.209  4.572  0.577  39.843 

  Asia     14.348 18.465  0.404  1.222 66.683 11.542 112.664 

  Rest      7.625  1.837  0.041  0.069  5.129 10.832  25.532 

  Sum      62.463 55.928 11.197 23.468 79.324 27.177 259.557 
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The number of people who, at a given point in time, reside in the region of birth consists of two 

components. The first is the number of people who, in 2020, reside in their country/area of birth 

(stayers) and the second is the number of people who migrated to another country/region within 

the region. The second component, i.e. the number of intra-regional international migrants, is 

shown in the diagonal of Table B.5. The total number of individuals born in their region of 

residence in 2020 (stayers) is obtained by subtracting, for each region, the number of individuals 

living in a country other than their country of birth from the population in the region in 2020. 

Table B.6 shows the population in 2020 by region of residence and region of birth. A diagonal 

entry shows the number of residents born in their country of residence or in a different country in 

the same region. An off-diagonal entry shows the numbers of individuals in a given region, born 

in a different region.  

Table B.6 Population by region of residence in 2020 and by region of birth (millions) 
        Destination 

Origin       EU+   USCan   LatAm   Africa     Asia    Rest      Sum 

  EU+    489.043   5.750   1.376    0.864    2.006   3.781  502.821 

  USCan    1.065 313.912   1.231    0.067    0.509   0.241  317.024 

  LatAm    4.898  25.911 650.471    0.036    0.424   0.205  681.945 

  Africa  10.576   2.871   0.038 1338.334    4.572   0.577 1356.967 

  Asia    14.348  18.465   0.404    1.222 4603.390  11.542 4649.371 

  Rest     7.625   1.837   0.041    0.069    5.129 247.021  261.721 

  Sum    527.554 368.745 653.561 1340.592 4616.031 263.366 7769.849 

 

Table B.7 presents a summary of the estimates.  The first column is the population in mid-2020. 

The second column shows the number of residents in a region born in the country of birth (stayers). 

The third column is the number of residents in a region born in another country of that region. The 

fourth column is the number of residents in a region born in that region. It is the sum of stayers 

and intra-regional international migrants. The next column shows the number of immigrants, that 

is residents of a region born in another country in that region or in another region. The next 

column shows the number of emigrants, that is individuals born in a region (row label) currently 

residing in a different country in that region or another region. The final column shows the net 

migration transitions.  

Table B.7 Population by region of residence in 2020 and region of birth. Summary table (millions) 

       Variable 

Region        Pop  Stayers   Intra Stayers+intra       Im       Ex     Net 

  EU+     527.554  465.091  23.952       489.043  503.601  478.868  24.733 

  USCan   368.745  312.816   1.095       313.912  367.650  315.928  51.721 

  LatAm   653.561  642.364   8.107       650.471  645.454  673.838 -28.383 

  Africa 1340.592 1317.125  21.209      1338.334 1319.383 1335.758 -16.375 

  Asia   4616.031 4536.707  66.683      4603.390 4549.347 4582.688 -33.340 

  Rest    263.366  236.189  10.832       247.021  252.534  250.889   1.645 

  Sum    7769.849 7510.292 131.879      7642.171 7637.970 7637.970   0.000 

  

Table B.8 shows the Abel-Cohen estimates of the number of recent migration flows (transitions) 

within and between the six regions of the world during the period 2015-20. The entries in a column 

show the number of residents in a region at the end of the interval (2020) by region of residence at 

the beginning of the interval (2015). The diagonal entries represent international migration 

transitions within each of the six regions. The estimated total number of migration transitions in 

the world between 2015 and 2020 is 95.9 million. The addition of stayers to the intra-regional 

migrants gives, for each region, the number of people in the region in 2020 that was also in the 
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region in 2015. Several of these persons may not have stayed in the region on a continuous basis. 

They may have left the region after mid-2015 and returned before mid-2020. The population 

figures are shown in Table B.9. 

A summary of recent flow estimates is shown in Table B.10.  

Recall that recent changes in residence are estimated for persons present at the end and at the 

beginning of the interval. Abel and Cohen added estimates of births and deaths. Migration 

(transition) probabilities are computed the numbers of transitions are divided by the population at 

the beginning of the interval (1995 for the 1995-00 interval and 2015 for the 2015-19 interval). The 

population in 1995 and 2015 by region of residence is shown in Table B.4. The estimation 

procedure introduces a small error due to the added births and deaths. The difference is 

considered sufficiently small to disregard the effect of births and deaths. A further justification for 

this simplification is that, in this paper, the data are used mainly to illustrate the multiregional 

model with individual preferences and immigration quota.  

Table B.8 Immigrant population in 2020 by region of residence in 2015 (million) 

        Destination 

Origin      EU+  USCan  LatAm Africa   Asia  Rest    Sum 

  EU+     9.440  1.283  0.905  1.329  2.018 1.718 16.693 

  USCan   1.385  0.338  2.920  0.331  2.102 0.434  7.510 

  LatAm   1.569  4.912  6.281  0.014  0.129 0.079 12.984 

  Africa  2.709  1.128  0.021  8.455  0.978 0.133 13.424 

  Asia    5.734  5.490  0.215  0.893 22.381 3.471 38.185 

  Rest    1.843  0.343  0.030  0.084  1.902 2.867  7.069 

  Sum    22.679 13.494 10.370 11.107 29.511 8.702 95.864 

 

Table B.9 Population in 2020 by region of residence in 2015 (millions) 

        Destination 

Origin       EU+   USCan   LatAm   Africa     Asia    Rest      Sum 

  EU+    514.315   1.283   0.905    1.329    2.018   1.718  521.567 

  USCan    1.385 355.589   2.920    0.331    2.102   0.434  362.761 

  LatAm    1.569   4.912 649.472    0.014    0.129   0.079  656.174 

  Africa   2.709   1.128   0.021 1337.940    0.978   0.133 1342.908 

  Asia     5.734   5.490   0.215    0.893 4608.901   3.471 4624.705 

  Rest     1.843   0.343   0.030    0.084    1.902 257.531  261.733 

  Sum    527.554 368.745 653.561 1340.592 4616.031 263.366 7769.849 

 

Table B.10 Population by region of residence in 2020 and region of residence in 2015. Summary 

table (millions) 

        Variable 

Region        Pop  Stayers  Intra Stayers+intra       Im       Ex    Net 

  EU+     527.554  504.874  9.440       514.315  518.113  512.127  5.987 

  USCan   368.745  355.251  0.338       355.589  368.407  362.423  5.984 

  LatAm   653.561  643.191  6.281       649.472  647.281  649.894 -2.613 

  Africa 1340.592 1329.485  8.455      1337.940 1332.137 1334.453 -2.316 

  Asia   4616.031 4586.520 22.381      4608.901 4593.650 4602.324 -8.674 

  Rest    263.366  254.664  2.867       257.531  260.499  258.866  1.633 

  Sum    7769.849 7673.985 49.762      7723.747 7720.087 7720.087  0.000 

The migration transitions in the period 1995-2000 are used to approximate location preferences. 

Table B.11 shows the population in 2000 by region of residence in 1995. Of the 495 million people 
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in the EU+ in 1995, 489 million are in the EU+ in 2000, which is 98.75 percent. In Africa, the 

probability of staying is 99.54 percent. Less than 0.5 percent of the population of Africa had a 

residence outside of Africa in 2000. Most who left, went to Europe, 0.27 percent of the population 

of Africa and 58.02 percent of those who left. The revealed location preferences are shown in Table 

B.12. 

Table B.11 Population in 2000 by region of residence in 1995 (million) 
        Destination 

Origin       EU+   USCan   LatAm  Africa     Asia    Rest      Sum 

  EU+    489.252   2.052   0.495   0.756    1.466   1.425  495.446 

  USCan    0.804 298.729   1.734   0.096    1.140   0.153  302.656 

  LatAm    0.676   6.214 519.123   0.006    0.141   0.025  526.185 

  Africa   2.174   0.721   0.022 809.694    0.712   0.118  813.441 

  Asia     2.663   4.118   0.133   0.394 3713.307   3.767 3724.382 

  Rest     2.136   0.466   0.030   0.032    1.588 254.179  258.431 

  Sum    497.705 312.299 521.537 810.978 3718.354 259.666 6120.540 

 

Table B.12 Location preferences revealed by the 1995-2000 migration flow 
        Destination 

Origin        EU+    USCan    LatAm   Africa     Asia     Rest Sum 

  EU+    0.987500 0.004141 0.000999 0.001525 0.002958 0.002877   1 

  USCan  0.002656 0.987027 0.005730 0.000316 0.003766 0.000505   1 

  LatAm  0.001285 0.011809 0.986579 0.000012 0.000268 0.000047   1 

  Africa 0.002673 0.000886 0.000027 0.995393 0.000876 0.000145   1 

  Asia   0.000715 0.001106 0.000036 0.000106 0.997026 0.001011   1 

  Rest   0.008265 0.001804 0.000115 0.000123 0.006145 0.983547   1 

 

Annex C  Create virtual population 

In the absence of individual data, the virtual population is created by sampling contingency tables 

(DeSalvo and Zhao, 2020; Kayibi et al., 2018). The aim is to reconstruct a population that is 

consistent with the aggregate figures tabulated in contingency tables. In principle, the statistical 

analysis of virtual populations is not different from the statistical analysis of real populations, 

except for the variances. The only difference between a virtual population and a real population is 

that the virtual population is obtained by sampling theoretical probability distributions with 

parameters estimated from empirical data, whereas real sample populations are obtained by 

sampling real populations. 

A virtual population is created from the tabulated data on population in 2020 by region of 

residence in that year and region of birth (Table B.6). In 2019, 272 million people or 3.5 percent of 

the world population resided in a country other than their country of birth (United Nations, 2019). 

In 2020 the migrant stock increased to 281 million or 3.6 percent of the world population 

(United Nations, 2020). In the system of six regions, 1.6 percent resided in a region other than 

their region of birth. Hence half of the international migrants (50.8 percent) reside in the region of 

birth. The proportion migrating to another region of the world is even less if recent changes of 

residence (2015-20) are considered, instead of lifetime migration data. Abel and Cohen (2019) 

found that, in 2020, 95.86 million people resided in a country other than their country of birth, 

which is 1.2 percent of the world population (Table B.8). The proportion that resides in 2020 in a 
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region other than their region of residence in 2015 is 0.59 percent. Hence 51.9 percent of the 

international migrants in the period 2015-20 moved to another country in their region.  

Excluding stayers from the study of migration is a bad practice, as many migration scholars have 

recently testified. That applies in particular when the decision to migrate or stay is the subject of 

study since the decision to stay is as much an expression of agency as the decision to leave the 

country. In this paper, stayers are included in the analysis. Since 96 percent of the world 

population resides in the country of birth and even more in the region of birth, a large sample of 

the world population is needed to obtain a sufficient number of migrants by region of origin and 

region of destination. For that reason, a random sample of one million people or 0.125 per 

thousand of the world population is drawn from the available tabulated data.  

The individuals in the virtual population are given an identification number (ID), a region of birth, 

a region of current (2020) residence, and a region of residence in 2015. The procedure used ensures 

that the virtual population (microsystem) is fully consistent with the tabulated data derived from 

the country-specific estimates published by the UN (2019) and Abel and Cohen (2019, 2021) 

(macrosystem). Each individual is assigned a location preference. It is the preferred region of 

residence based on the preferences revealed by the migrant flow in the period 1995-2000. Table C.1 

shows the first records of the person data structure. The first individual is born in Latin America, 

currently resides in Latin America and prefers to stay in the region. Individual 7, born in Africa, is 

currently living in EU+, but prefers the USA or Canada. The last column is the identification 

number of the region of preference. The procedure used to produce these simulated data is 

described in this Annex. Additional personal attributes, if available and relevant for the analysis, 

could be easily added using a similar procedure. 

 

Table C.1 Person data structure 
  ID  birth IDc19 IDc15 preference pref 

1  1  LatAm LatAm LatAm      LatAm    3 

2  2   Asia  Asia  Asia       Asia    5 

3  3  USCan USCan USCan      USCan    2 

4  4   Rest  Asia  Asia       Asia    5 

5  5   Asia  Asia  Asia       Asia    5 

6  6   Asia  Asia  Asia       Asia    5 

7  7 Africa   EU+   EU+       USCan   2 

8  8 Africa  Asia  Asia        EU+    1 

The Annex consists of three sections. The first describes the allocation of region of birth and region 

of residence in 2020. The second covers the allocation or region of residence in 2015. The third adds 

location preferences. 

a. Region of birth and region of residence in 2020 

Three methods are considered: simple multinomial sampling and two versions of stratified 

sampling. The first involves simple multinomial sampling from an empirical probability 

distribution; namely, the joint distribution of region of birth and region of residence in 2020 (Table 

B.6). The 36 parameters of the multinomial distribution are obtained by dividing the entries in 

Table B.6 by the overall total (world population). The parameter 𝑝𝑖𝑗 of the multinomial distribution 

is the probability that an individual, selected at random from all individuals in the population, is 

born in region i and resides in region j in 2020. Each individual is assigned a region of birth and a 

region of residence such that the joint distribution of region of residence and region of birth in the 



88  

 

virtual population is equal to the distribution of regions of birth observed in the 2020 population. 

Although the empirical region-of-residence-by-region-of-birth distribution is maintained, the 

entries in Table B.6 are not reproduced exactly (scaled to the size of the virtual population). The 

reason is the random variation introduced by the sampling, i.e. sample variation.  

 

The second method, stratified sampling, removes the sample variation. The sample population in 

each combination of region of birth and region of residence in 2020, i.e. in the strata, is obtained by 

multiplying the number of individuals in the virtual population (one million) by the probabilities 

computed from Table B.6. The cell entries are not subject to sample variation. The entries are real 

values, not integers. Integer values are obtained by rounding. To ensure that the rounding errors 

do not cause the sum of the cell counts to deviate from the total size of the virtual population, the 

largest cell count is adjusted. The result is shown in Table C.3. An alternative (third) method, 

stratified and sequential random sampling, produces integer values and ensures that the sample 

population has exactly the same joint distribution of region of birth and region of residence in 2020 

as the observed population. It starts by selecting 62,941 individuals at random from all individuals 

in the virtual population. They are assigned EU+ as region of birth and EU+ as region of residence 

in 2020. Next, 740 individuals are randomly selected from the individuals who did not yet get 

assigned a region of birth and a region of residence in 2020. They are assigned EU+ as region of 

birth and USCan as region of residence in 2020. The procedure is continued until all individuals 

have received a region of birth and a region of residence in 2020. Notice that all individuals have 

equal probabilities to be assigned to a given region of birth and a given region of residence.  

 

Table C.2 Population, by region of residence in 2020 
       Population Percentage     Sample 

        (million) 

EU+       527.554       6.79      67898 

USCan     368.745       4.75      47458 

LatAm     653.561       8.41      84115 

Africa   1340.592      17.25     172538 

Asia     4616.031      59.41     594095 

Rest      263.366       3.39      33896 

Sum      7769.849     100.00    1000000 

 

Table C.3 Sample population by region of residence in 2020 and region of birth 
           Region of residence in 2020 

Birth      EU+ USCan LatAm Africa   Asia  Rest     Sum 

  EU+    62941   740   177    111    258   487   64714 

  USCan    137 40401   158      9     66    31   40802 

  LatAm    630  3335 83717      5     55    26   87768 

  Africa  1361   369     5 172247    588    74  174644 

  Asia    1847  2376    52    157 592472  1485  598389 

  Rest     981   236     5      9    660 31792   33683 

  Sum    67897 47457 84114 172538 594099 33895 1000000 

b. Region of residence in 2015 

The members of the virtual population are assigned a region of residence in 2015 by stratified and 

sequential random sampling. For each stratum the sample size is given by the cell entries of Table 

B.9, scaled to a total equal to the size of the virtual population. The result is shown in Table C.4. 

The figures are fully consistent with the figures in Table B.9. For example, 

66193=1000000*514.315/7769.849. The last two figures are from Table B.9. 
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Note that the region of residence in 2015 assigned to an individual depends on the region of 

residence in 2020, but is independent of the individual’s region of birth, implying that the 

relocation in the period 2015-19 is independent of the region of birth. This independence 

assumption is not realistic, but is made because no three-way classification of individuals is 

available on region of residence in 2020 by region of residence in 2015 and region of birth. Some 

countries collect, in censuses and surveys, data from their residents on country of birth and 

country of residence five years ago. That data could be used to introduce dependencies of 

migration transition flows on region of birth. Alternatively, it might be possible to extend the 

estimation method used by Abel and Cohen (2019, 2021) to produce region of birth-specific 

estimates of recent migration.  

c. Location preferences by region of residence in 2015 

In this paper, the location preferences are the preferences revealed by the migration flows in the 

period from 1995-2000, estimated by Abel and Cohen (2019, 2021). Location preferences depend on 

the region of residence only and are not influenced by other factors. The distribution of location 

preferences among the residents of a given region is a multinomial distribution: 

{𝑝𝑖1
0 , 𝑝𝑖2

0 , 𝑝𝑖3
0 ,… , 𝑝𝑖𝑟

0 }. An element 𝑝𝑖𝑗
0  gives the probability that an individual in region i prefers to 

live in region j. It is determined by the spatial distribution in 2000 of the residents of region i in 

1995. Table B.12 in Annex B shows the location preferences. The table is referred to as the matrix of 

location preferences or preference matrix. Consider the population of Africa in 1995. Of the 

population of Africa in 1995 the large majority (99.5 percent) are in Africa five years later, 2.7 per 

thousand reside in EU+, 0.9 per thousand in USACan, etc.. Notice that the revealed preferences 

account for the immigration restrictions (quota) that existed in the period 1995-2000.  

Stratified and sequential sampling is used to assign a preferred region of residence to individuals. 

Recall that the distribution of location preferences depends on the region of residence at the 

beginning of the baseline interval, in this case 2015. The procedure consists of two steps. In the first 

step, the number of residents of i with a preference for region j is obtained by multiplying the 

number of residents in i by the probability that a resident of i prefers region j. The expected 

number of people in region i preferring j is 𝑝𝑖𝑗
0  𝑛𝑖+. In the second step, 𝑝𝑖𝑗

0  𝑛𝑖+ individuals are 

selected at random from the residents of i who have not been assigned a preferred region of 

residence yet. The procedure ensures that the number of residents in i who prefer j is equal to the 

expected number obtained in the first step. The number of individuals in the sample by region of 

residence at the beginning of the interval (2015) and preferred region of residence are shown in 

Table C.5. The figures are fully consistent with the figures in Table 3.1. For example, the number of 

individuals in EU+ in 2015 that prefers the live in EU+ is 66287=1000000*515.047/7769.849. The last 

two figures are from Table 3.1. 

Individual data on region of birth, regions of residence in 2015 and 2020, and location preference 

are stored in a person data structure (data frame or person file) with one record per person. This 

approach to data storage has a big advantage; namely, that results of the simulation may easily be 

added to the data frame.  
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Table C.4 Sample population by region of residence in 2020 and region residence in 2015 
        R2020 

R2015        EU+   USCan   LatAm  Africa    Asia    Rest     Sum 

  EU+      66193     165     116     171     260     221   67126 

  USCan      178   45764     376      43     271      56   46688 

  LatAm      202     632   83587       2      17      10   84450 

  Africa     349     145       3  172196     126      17  172836 

  Asia       738     707      28     115  593180     447  595215 

  Rest       237      44       4      11     245   33144   33685 

  Sum      67897   47457   84114  172538  594099   33895 1000000 

  

Table C.5 Sample population by region of residence at t and preferred region of residence 
                 Preferred region of residence 

Region2015   EU+ USCan LatAm Africa   Asia  Rest     Sum 

    EU+    66287   278    67    102    199   193   67126 

    USCan    124 46082   268     15    176    24   46688 

    LatAm    108   997 83317      1     23     4   84450 

    Africa   462   153     5 172040    151    25  172836 

    Asia     426   658    21     63 593445   602  595215 

    Rest     278    61     4      4    207 33131   33685 

    Sum    67685 48230 83681 172225 594200 33978 1000000 

 

 

 

 


